ЭНХАНСЕРЫ ТРАНСЛЯЦИИ ДЛЯ ГЕННОЙ ИНЖЕНЕРИИ РАСТЕНИЙ

Полный текст:


Аннотация

Трансгенные растения широко используются для проведения фундаментальных и прикладных исследований. Эффективная экспрессия трансгенов зависит от правильного выбора служебных элементов при планировании структуры генетической конструкции, в частности, важное значение имеет структура 5′-нетранслируемого района, влияющая на эффективность инициации трансляции мРНК. В статье рассмотрены характеристики 5′-НТП, определяющие эффективность трансляции мРНК в клетках растений, а также различные трансляционные энхансеры.


Об авторах

А. В. Кочетов
Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия
Россия


Е. А. Филипенко
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


О. Г. Смирнова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


В. К. Шумный
Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук, Новосибирск, Россия Новосибирский национальный исследовательский государственный университет, Новосибирск, Россия
Россия


Список литературы

1. Agalarov S.C., Sogorin E.A., Shirokikh N.E., Spirin A.S. Insight into the structural organization of the omega leader of TMV RNA: the role of various regions of the sequence in the formation of a compact structure of the omega RNA // Biochem. Biophys. Res. Commun. 2011. V. 404. P. 250–253.

2. Akua T., Shaul O. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5’ UTR intron // J. Exp. Bot. 2013. V. 64. P. 4255–4270.

3. Andrews S.J., Rothnagel J.A. Emerging evidence for functional peptides encoded by short open reading frames // Nat. Rev. Genet. 2014. V. 15. P. 193–204.

4. Bazykin G.A., Kochetov A.V. Alternative translation start sites are conserved in eukaryotic genomes // Nucl. Acids Res. 2011. V. 39. P. 567–577.

5. Cavener D.R., Ray S.C. Eukaryotic start and stop translation sites // Nucl. Acids Res. 1991. V. 19. P. 3185–3192.

6. Christensen A.C., Lyznik A., Mohammed S. et al. Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons // Plant Cell. 2005. V. 17. P. 2805–2816.

7. Dansako T., Kato K., Satoh J. et al. 5′ untranslated region of the HSP18.2 gene contributes to effi cient translation in plant cells // J. Biosci. Bioeng. 2003. V. 95. P. 52–58.

8. De Amicis F., Patti T., Marchetti S. Improvement of the pBI121 plant expression vector by leader replacement with a sequence combining a poly(CAA) and a CT motif // Transgenic Res. 2007. V. 16. P. 731–738.

9. De Loose M., Danthinne X., Van Bockstaele E. et al. Different 5′ leader sequences modulate b-glucuronidase accumulation levels in transgenic Nicotiana tabacum plants // Euphytica. 1995. V. 85. P. 209–216.

10. Echevarría-Zomeño S., Yángüez E., Fernández-Bautista N., Castro-Sanz A.B. Regulation of translation initiation under biotic and abiotic stresses // Int. J. Mol. Sci. 2013. V. 14. P. 4670–4683.

11. Englert M., Latz A., Becker D. et al. Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments // Biochimie. 2007. V. 89. P. 1351–1365.

12. Fan Q., Treder K., Miller W.A. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement effi ciency // BMC Biotechnol. 2012. V. 12. P. 22.

13. Gallie D.R. The 5′-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F // Nucl. Acids Res. 2002. V. 30. P. 3401–3411.

14. Gallie D.R., Sleat D.E., Watts J.W. et al. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo // Nucl. Acids Res. 1987a. V. 15. P. 3257–3273.

15. Gallie D.R., Sleat D.E., Watts J.W. et al. A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo // Nucl. Acids Res. 1987b. V. 15. P. 8693–8711.

16. Hansen E.R., Petracek M.E., Dickey L.F., Thompson W.F. The 5′ end of the pea ferredoxin-1 mRNA mediates rapid and reversible light-directed changes in translation in tobacco // Plant Physiol. 2001. V. 125. P. 770–778.

17. Hulzink R.J., Groot de P.F., Croes A.F. et al. The 5′-untranslated region of the ntp303 gene strongly enhances translation during pollen tube growth, but not during pollen maturation // Plant Physiol. 2002. V. 129. P. 342–353.

18. Ingolia N.T., Ghaemmaghami S., Newman J.R., Weissman J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profi ling // Science. 2009. V. 324. P. 218–223.

19. Ingolia N.T., Lareau L.F., Weissman J.S. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes // Cell. 2011. V. 147. P. 789–802.

20. Jackson R.J., Hellen C.U.T., Pestova T. The mechanism of eukaryotic translation initiation and principles of its regulation // Nat. Rev. Mol. Cell. Biol. 2010. V. 10. P. 113–127.

21. Juntawong P., Bailey-Serres J. Dynamic light regulation of translation status in Arabidopsis thaliana // Front. Plant Sci. 2012. V. 3. P. 66.

22. Kanoria S., Burma P.K. A 28 nt long synthetic 5’UTR (synJ) as an enhancer of transgene expression in dicotyledonous plants // BMC Biotechnol. 2012. V. 12. P. 85.

23. Kawaguchi R., Bailey-Serres J. mRNA sequence features that contribute to translational regulation in Arabidopsis // Nucl. Acids Res. 2005. V. 33. P. 955–965.

24. Kertesz M., Wan Y., Mazor E. et al., Genome-wide measurement of RNA secondary structure in yeast // Nature. 2010. V. 467. P. 103–107.

25. Kim Y., Lee G., Jeon E. et al. The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational effi ciency in Arabidopsis thaliana // Nucl. Acids Res. 2014. V. 42. P. 485–498.

26. Kochetov A.V. Alternative translation and hidden coding potential of eukaryotic mRNAs // BioEssays. 2008. V. 30. P. 683–691.

27. Kochetov A.V., Ischenko I.V., Vorobiev D.G. et al. Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features // FEBS Lett. 1998. V. 440. P. 351–355.

28. Kochetov A.V., Ponomarenko M.P., Frolov A.S. et al. Prediction of eukaryotic mRNA translational properties // Bioinformatics. 1999. V. 15. P. 704–712.

29. Kochetov A.V., Sarai A., Rogozin I.B. et al. The role of alternative translation start sites in generation of human protein diversity // Mol. Genet. Genomics. 2005. V. 273. P. 491–496.

30. Kochetov A.V., Sarai A., Vorob’ev D.G., Kolchanov N.A. The context organization of functional regions in yeast genes with high-level expression // Mol. Biol. (Mosk). 2002a. V. 36. P. 1026–1034.

31. Kochetov A.V., Syrnik O.A., Rogozin I.B. et al. Context organization of mRNA 5′-untranslated regions of higher plants // Mol. Biol. (Mosk). 2002b. V. 36. P. 649–656.

32. Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes // Gene. 2005. V. 361. P. 13–37.

33. Liu M.J., Wu S.H., Chen H.M. Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis // Mol. Syst. Biol. 2012. V. 8. P. 566.

34. Lukaszewicz M., Feuermann M., Jerouville B. et al. In vivo evaluation of the context sequence of the translation initiation codon in plants // Plant Sci. 2000. V. 154. P. 89–98.

35. Mardanova E.S., Zamchuk L.A., Ravin N.V. The 5′ untranslated region of the maize alcohol dehydrogenase gene provides efficient translation of mRNA in plants under stress conditions // Mol. Biol. (Mosk). 2007. V. 41. P. 1002–1008.

36. Marmiroli N., Maestri E. Plant peptides in defense and signaling // Peptides. 2014. V. 56. P. 30–44.

37. Matsui T., Asao H., Ki M. et al. Transgenic lettuce producing a candidate protein for vaccine against edema disease // Biosci. Biotechnol. Biochem. 2009. V. 73. P. 1628–1634.

38. Matsuura H., Ishibashi Y., Shinmyo A. et al. Genome-wide analyses of early translational responses to elevated temperature and high salinity in Arabidopsis thaliana // Plant Cell. Physiol. 2010. V. 51. P. 448–462.

39. Matsuura H., Shinmyo A., Kato K. Preferential translation mediated by Hsp81-3 5′-UTR during heat shock involves ribosome entry at the 5′-end rather than an internal site in Arabidopsis suspension cells // J. Biosci. Bioeng. 2008. V. 105. P. 39–47.

40. Matsuura H., Takenami S., Kubo Y. et al. A computational and experimental approach reveals that the 5′-proximal region of the 5′-UTR has a cis-regulatory signature responsible for the heat stressregulated mRNA translation in Arabidopsis // Plant Cell. Physiol. 2013. V. 54. P. 474–483.

41. Meshcheriakova Y.A., Saxena P., Lomonossoff G.P. Finetuning levels of heterologous gene expression in plants by orthogonal variation of the untranslated regions of a nonreplicating transient expression system // Plant Biotechnol. J. 2014. V. 12. P. 718–727.

42. Moeller J.R., Moscou M.J., Bancroft T. et al. Differential accumulation of host mRNAs on polyribosomes during obligate pathogen-plant interactions // Mol. Biosyst. 2012. V. 8. P. 2153–2165.

43. Mustroph A., Zanetti M.E., Jang C.J. et al. Profi ling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis // Proc. Natl Acad. Sci. USA. 2009. V. 106. P. 18843–18848.

44. Munoz A., Castellano M.M. Regulation of translation initiation under abiotic stress conditions in plants: Is it a conserved or not so conserved process among eukaryotes? // Comp. Funct. Genomics. 2012:406357.

45. Nicholson B.L., White K.A. 3′ Cap-independent translation enhancers of positive-strand RNA plant viruses // Curr. Opin. Virol. 2011. V. 1. P. 373–380.

46. Nopo L., Woffenden B.J., Reed D.G. et al. Super-promoter: TEV, a powerful gene expression system for tobacco hairy roots // Methods Mol. Biol. 2012. V. 824. P. 501–526.

47. Ortega J.L., Wilson O.L., Sengupta-Gopalan C. The 5′ untranslated region of the soybean cytosolic glutamine synthetase β(1) gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants // Mol. Genet. Genomics. 2012. V. 287. P. 881–893.

48. Patel M., Siegel A.J., Berry J.O. Untranslated regions of FbRbcS1 mRNA mediate bundle sheath cell-specifi c gene expression in leaves of a C4 plant // J. Biol. Chem. 2006. V. 281. P. 25485–25491.

49. Roy B., Arnim von A.G. Translational regulation of cytoplasmic mRNAs // Arabidopsis Book. 2013. V. 11. e0165.

50. Satoh J., Kato K., Shinmyo A. The 5′-untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant // J. Biosci. Bioeng. 2004. V. 98. P. 1–8.

51. Sugio T., Matsuura H., Matsui T. et al. Effect of the sequence context of the AUG initiation codon on the rate of translation in dicotyledonous and monocotyledonous plant cells // J. Biosci. Bioeng. 2010. V. 109. P. 170–173.

52. Sugio T., Satoh J., Matsuura H. et al. The 5′-untranslated region of the Oryza sativa alcohol dehydrogenase gene functions as a translational enhancer in monocotyledonous plant cells // J. Biosci. Bioeng. 2008. V. 105. P. 300–302.

53. Sunderland P.A., West C.E., Waterworth W.M., Bray C.M. Choice of a start codon in a single transcript determines DNA ligase 1 isoform production and intercellular targeting in Arabidopsis thaliana // Biochem. Soc. Transact. 2004. V. 32. P. 614–616.

54. Ueda K., Matsuura H., Yamaguchi M. et al. Genome-wide analyses of changes in translation state caused by elevated temperature in Oryza sativa // Plant Cell. Physiol. 2012. V. 53. P. 1481–1491.

55. Volkova O.A., Kochetov A.V. Interrelations between the nucleotide context of human start AUG codon, N-end amino acids of the encoded protein and initiation of translation // J. Biomol. Struct. Dynam. 2010. V. 27. P. 611–618.

56. Wang C.T., Xu Y.N. The 5′ untranslated region of the FAD3 mRNA is required for its translational enhancement at low temperature in Arabidopsis roots // Plant Sci. 2010. V. 179. P. 234–240.

57. Watanabe N., Che F.-S., Iwano M. et al. Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons // J. Biol. Chem. 2001. V. 276. P. 20474–20481.

58. Yamamoto Y.Y., Tsuji H., Obokata J. 5′-leader of a photosystem I gene in Nicotiana sylvestris, psaDb, contains a translational enhancer // J. Biol. Chem. 1995. V. 270. P. 12466–12470.


Дополнительные файлы

Просмотров: 126

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)