Genetic characterization of clinical Klebsiella isolates circulating in Novosibirsk
https://doi.org/10.18699/VJ21.49-o
Abstract
72 clinical strains of Klebsiella spp. isolated from samples obtained from humans in Novosibirsk, Russia, were analyzed. Species identification of strains was performed using 16S rRNA and rpoB gene sequences. It was revealed that Klebsiella pneumoniae strains were dominant in the population (57 strains), while the remaining 15 strains were K. grimontii, K. aerogenes, K. oxytoca and K. quasipneumoniae. By molecular serotyping using the wzi gene sequence, K. pneumoniae strains were assigned to twenty-one K-serotypes with a high proportion of virulent K1- and K2-serotypes. It was found that K. pneumoniae strains isolated from the hospitalized patients had a higher resistance to antibiotics compared to the other Klebsiella species. Real-time PCR revealed that the population contained genes of the blaSHV, blaTEM, blaCTX families and the blaOXA-48 gene, which are the genetic determinants of beta-lactam resistance. It has been shown that the presence of the blaCTX sequence correlated with the production of extended-spectrum beta-lactamases, and phenotypic resistance to car-bapenems is due to the presence of the blaOXA-48 gene. At the same time, the carbapenemase genes vim, ndm, kpc, imp were not detected. Among the aminoglycoside resistance genes studied, the aph(6)-Id and aadA genes were found, but their presence did not always coincide with phenotypic resistance. Resistance to fluoroquinolones in the vast majority of strains was accompanied by the presence of the aac(6’)-IB-cr, oqxA, oqxB, qnrB, and qnrS genes in various combinations, while the presence of the oqxA and/or oqxB genes alone did not correlate with resistance to fluoroquinolones. Thus, the detection of blaCTX and blaOXA-48 can be used to quickly predict the production of extended-spectrum beta-lactamases and to determine the resistance of Klebsiella to carbapenems. The detection of the aac(6’)-Ib-cr and/or qnrB/qnrS genes can be used to quickly determine resistance to fluoroquinolones.
Keywords
About the Authors
A. V. BardashevaRussian Federation
Novosibirsk
N. V. Fomenko
Russian Federation
Novosibirsk
T. V. Kalymbetova
Russian Federation
Novosibirsk
I. V. Babkin
Russian Federation
Novosibirsk
S. O. Chretien
Russian Federation
Novosibirsk
E. V. Zhirakovskaya
Russian Federation
Novosibirsk
N. V. Tikunova
Russian Federation
Novosibirsk
V. V. Morozova
Russian Federation
Novosibirsk
References
1. Ivanov D.V., Egorov A.M. Spreading and mechanisms of antimicrobial resistance in microorganisms, producing betalactamases. Molecular mechanisms of resistance to betalactam antibiotics of Klebsiella spp. strains, isolated in cases of nosocomial infections. Biochem. (Moscow) Suppl. Ser. B. 2008;2:311317. DOI 10.1134/S1990750808030141.
2. Kozlova N.S., Barantsevich N.E., Barantsevich E.P. Susceptibility to antibiotics in Klebsiella pneumoniae strains isolated in a multidisciplinary medical centre. Infektsiya i Immunitet = Russian Journal of Infection and Immunity. 2018;8(1):7984. (in Russian)] DOI 10.15789/22207619201817984.
3. Kozlova Y.N., Fomenko N.V., Morozova V.V., Saranina I.V., Tikunov A.Yu., Ganichev D.A., Samokhin A.G., Pavlov V.V., Rozhnova O.M., Bondar’ I.A., Zenkova E.V., Nimaev V.V., Klimontov V.V., Tikunova N.V. Genetic and biochemical characterization of staphylococci occurring in Novosibirsk, Russia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017; 21(8):952958. DOI 10.18699/VJ17.318. (in Russian)
4. Mashkovsky M.D. Medicinal Preparations. Moscow: Novaya Volna Publ., 2005. (in Russian)
5. Sukhorukova M.V., Edelstein M.V., Ivanchik N.V., Skleenova E.Yu., Shaidullina E.R., Azizov I.S., Shek E.A., KuzmenkovA.Iu., Dekhnich A.V., Kozlov R.S., Semenova N.V., … Zvonareva O.V., Kornilova P.A., Krianga V.G., Portniagina U.S., Shamaeva S.Kh., Popov D.A., Vostrikova T.Iu. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study “MARATHON 2015–2016”. Kliničeskaâ Mikrobiologiâ i Antimikrobnaâ Himioterapiâ = Clinical Microbiology and Antimicrobial Chemotherapy. 2019;21(2):147159. DOI 10.36488/cmac.2019.2.147159. (in Russian)
6. Tapalsky D.V., Osipov V.A., Zhavoronok S.V. Carbapenemases of gramnegative pathogens: spread and methods of detection. Meditsynskyj Zhurnal = Medical Journal. 2012;2(40):1015. (in Russian)
7. Chebotar I.V., Bocharova Yu.A., Podoprigora I.V., Shagin D.A. The reasons why Klebsiella pneumoniae becomes a leading opportunistic pathogen. Kliničeskaâ Mikrobiologiâ i Antimikrobnaâ Himioterapiâ = Clinical Microbiology and Antimicrobial Chemotherapy. 2020;22(1):419. DOI 10.36488/cmac.2020.1.419. (in Russian)
8. Edelstein M.V. Detection of extended spectrum βlactamases by phenotypic methods in gramnegative bacteria. Kliničeskaâ Mikrobiologiâ i Antimikrobnaâ Himioterapiâ = Clinical Microbiology and Antimicrobial Chemotherapy. 2001;3(2):183189. (in Russian)
9. Brisse S., Passet V., Haugaard A.B., Babosan A., KassisChikhani N., Struve C., Decré D. wzi gene sequencing, a rapid method for determination of capsulartype for Klebsiella strains. J. Clin. Microbiol. 2013;51:40734078. DOI 10.1128/JCM.0192413.
10. Broberg C.A., Palacios M., Miller V.L. Klebsiella: a long way to go towards understanding this enigmatic jetsetter. F1000Prime Rep. 2014;6:64. DOI 10.12703/P664.
11. Bush K., Jacoby G.A. Updated functional classification of betalactamases. Antimicrob. Agents Chemother. 2010;54(3):969976. DOI 10.1128/AAC.0100909.
12. Galal L., Abdel Aziz N.A., Hassan W.M. Defining the relationship between phenotypic and genotypic resistance profiles of multidrugresistant enterobacterial clinical isolates. Adv. Exp. Med. Biol. 2019; 1214:921. DOI 10.1007/5584_2018_208.
13. Gharrah M.M., ElMahdy A.M., Barwa R.F. Association between virulence factors and extended spectrum betalactamase producing Kleb siella pneumoniae compared to nonproducing isolates. Interdiscip. Perspect. Infect. Dis. 2017:7279830. DOI 10.1155/2017/7279830.
14. Hoa P.L., Chowa K.H., Yuena K.Y., Ngb W.S., Chaua P.Y. Comparison of a novel, inhibitorpotentiated discdiffusion test with other methods for the detection of extendedspectrum betalactamases in Escherichia coli and Klebsiella pneumoniae. J. Antimicrob. Chemother. 1998;42:4954.
15. Hooper D.C., Jacoby G.A. Mechanisms of drug resistance: quinolone resistance. Ann. N.Y. Acad. Sci. 2015;1354(1):1231. DOI 10.1111/nyas.12830.
16. Lee H.C., Chuang Y.C., Yu W.L., Lee N.Y., Chang C.M., Ko N.Y., Wang L.R., Ko W.C. Clinical implications of hypermucoviscosity phenotype in Klebsiella pneumoniae isolates: association with invasive syndrome in patients with communityacquired bacteraemia. J. Intern. Med. 2006;259(6):606614. DOI 10.1111/j.13652796.2006.01641.x.
17. Lee K., Chong Y., Shin H.B., Kim Y.A., Yong D., Yum J.H. Modified Hodge and EDTAdisk synergy tests to screen metallolactamaseproducing strains of Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 2001;7:8891.
18. Liakopoulos A., Mevius D., Ceccarelli D. A review of SHV extendedspectrum βlactamases: neglected yet ubiquitous. Front. Microbiol. 2016;5(7):1374. DOI 10.3389/fmicb.2016.01374.
19. Morozova V.V., Babkin I.V., Kozlova Y.N., Baykov I.K., Bokovaya O.V., Tikunov A.Yu., Ushakova T.А., Bardasheva A.V., Ryabchikova E.I., Zelentsova E., Tikunova N.V. Isolation and characterization of a novel Klebsiella pneumoniae N4like bacteriophage KP8. Viruses. 2019;11(12):1115. DOI 10.3390/v11121115.
20. Mukherjee S., Naha S., Bhadury P., Saha B., Dutta M., Dutta S., Basu S. Emergence of OXA232producing hypervirulent Klebsiella pneumoniae ST23 causing neonatal sepsis. J. Antimicrob. Chemother. 2020;75(7):20042006. DOI 10.1093/jac/dkaa080.
21. Podschun R., Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 1998;11(4):589603.
22. Ramirez M.S., Tolmasky M.E. Aminoglycoside modifying enzymes. Drug. Resist. Updat. 2010;13(6):151171.
23. Robicsek A., Jacoby G.A., Hooper D.C. The worldwide emergence of plasmidmediated quinolone resistance. Lancet Infect. Dis. 2006;6: 629640.
24. Walsh T.R., Toleman M.A., Poirel L., Nordmann P. Metallobetalactamases: the quiet before the storm? Clin. Microbiol. Rev. 2005;18(2): 306325.
25. Yang H.Y., Nam Y.S., Lee H.J. Prevalence of plasmidmediated quinolone resistance genes among ciprofloxacinnonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea. Can. J. Infect. Dis. Med. Microbiol. 2014;25(3): 163169.
26. Yong D., Lee K., Yum J.H., Shin H.B., Rossolini G.M., Chong Y. ImipenemEDTA disk method for differentiation of metallobetalactamaseproducing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2002;40(10):37983801.