Preview

Vavilov Journal of Genetics and Breeding

Advanced search

A GENE REGULATORY NETWORK MODEL FOR VERNALIZATION AND SEASONAL FLOWERING RESPONSE IN WINTER WHEAT AND BARLEY

Abstract

The transition from vegetative to reproductive development in wheat is regulated by seasonal cues, including vernalization and photoperiod. Here we present a simple logical model of the wheat development gene network. Vernalization accelerates flowering in winter cereals. It is regulated mainly by the vernalization genes VRN1, VRN2, and VRN3. After vernalization, VRN1 downregulates the VRN2 flowering repressor, thereby increasing the VRN3 level. The expression of VRN3 promotes further increases in the VRN1 transcription level, generating a positive feedback loop, which enhances VRN1 transcription to a threshold level required to initiate flowering. The products of the PPD1 and CO2 photoperiod genes increase VRN3 expression under long daylight conditions. Seasonal changes in day length are perceived by plant photoreceptors and transmitted to the circadian clock to modulate flowering time. Here we integrate data on vernalization and photoperiod genes in a gene network. Using a synchronous Boolean model, we have simulated the network dynamics. This model can be useful to test the coherence of experimental data and to hypothesize gene interactions that remain to be discovered.

About the Authors

I. L. Stepanenko
Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
Russian Federation


O. G. Smirnova
Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
Russian Federation


I. I. Titov
Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Ananko E.A., Podkolodny N.L., Stepanenko I.L. et al. GeneNet in 2005 // Nucl. Acids Res. 2005. V. 33. D425–427.

2. Casao M.C., Igartua E., Karsai I. et al. Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days // J. Exp. Bot. 2011. V. 62. P. 1939–1949.

3. Corbesier L., Vincent C., Jang S.H. et al. FT protein movement contributes to long-distance signaling in fl oral induction of Arabidopsis // Sci. 2007. V. 316. P. 1030–1033.

4. Davidich M., Bornholdt S. Boolean network model predicts cell cycle sequence of fi ssion yeast // PLoS ONE. 2008. V. 3. P. e1672.

5. Distelfeld A., Li C., Dubcovsky J. Regulation of fl owering in temperate cereals // Curr. Opin. Plant Biol. 2009. V. 12. P. 178–184.

6. Distelfeld A., Dubcovsky J. Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels // Mol. Genet. Genomics. 2010. V. 283. P. 223–232.

7. Greenup A., Peacock W.J., Dennis E.S., Trevaskis B. The molecular biology of seasonal fl owering-responses in Arabidopsis and the cereals // Ann. Bot. 2009. V. 103. P. 1165–1172.

8. Greenup A.G., Sasani S., Oliver S.N. et al. ODDSOC2 is a MADS box fl oral repressor that is down-regulated by vernalization in temperate cereals // Plant Physiol. 2010. V. 153. P. 1062–1073.

9. Greenup A.G., Sasani S., Oliver S.N. et al. Transcriptome analysis of the vernalization response in barley (Hordeum vulgare) seedlings // PLoS One. 2011. V. 6. P. e17900.

10. Hemming M.N., Peacock W.J., Dennis, E.S., Trevaskis B. Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley // Plant Physiol. 2008. V. 147. P. 355–366.

11. Higgins J.A., Bailey P.C., Laurie D.A. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses // PLoS One. 2010. V. 19. P. e10065.

12. Imaizumi T. Arabidopsis circadian clock and photoperiodism: Time to think about location // Curr. Opin. Plant Biol. 2010. V. 13. P. 83–89.

13. Kauffman S., Peterson C., Samuelsson B. et al. Genetic networks with canalyzing Boolean rules are always stable // Proc. Natl Acad. Sci. USA. 2004. V. 101. P. 17102–17107.

14. Kane N.A., Agharbaoui Z., Diallo A.O. et al. TaVRT2 represses transcription of the wheat vernalization gene TaVRN1 // Plant J. 2007. V. 51. P. 670–680.

15. Li C., Distelfeld A., Comis A., Dubcovsky J. Wheat fl owering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes // Plant J. 2011. V. 67. P. 763–773.

16. Li C., Dubcovsky J. Wheat FT protein regulates VRN1 transcription through interactions with FDL2 // Plant J. 2008. V. 55. P. 543–554.

17. Mendoza L., Thieffry D., Alvarez-Buylla E. Genetic control of fl ower morphogenesis in Arabidopsis thaliana: а logical analysis // Bioinformatics. 1999. V. 15. P. 593–606.

18. Oliver S.N., Finnegan E.J., Dennis E.S. et al. Vernalizationinduced fl owering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene // Proc. Natl Acad. Sci. USA. 2009. V. 106. P. 8386–8391.

19. Papin J.A., Hunter T., Palsson B.O., Subramaniam S. Reconstruction of cellular signalling networks and analysis of their properties // Nat. Rev. Mol. Cell Biol. 2005. V. 6. P. 99–111.

20. Sawa M., Nusinow D.A., Kay S.A., Imaizumi T. FKF1 and GIGANTEa complex formation is required for daylength measurement in Arabidopsis // Sci. 2007. V. 318. P. 261–265.

21. Shimada S., Ogawa T., Kitagawa S. et al. A genetic network of fl owering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T // Plant J. 2009. V. 58. P. 668–681.

22. Smirnova O.G., Stepanenko I.L., Shumny V.K. The role of the COP1, SPA, and PIF proteins in plant photomorphogenesis // Biol. Bull. Rev. 2011. V. 1. Nо 4. P. 314–324.

23. Song Y.H., Ito S., Imaizumi T. Similarities in the circadian clock and photoperiodism in plants // Curr. Opin. Plant Biol. 2010. V. 13. P. 594–603.

24. Stephenson T.J., McIntyre C.L., Collet C. et al. Genome-wide identifi cation and expression analysis of the NF-Y family of transcription factors in Triticum aestivum // Plant Mol. Biol. 2007. V. 65 P. 77–92.

25. Tiwari S.B., Shen Y., Chang H.C. et al. The fl owering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element // New Phytol. 2010. V. 187. P. 57–66.

26. Trevaskis B., Hemming M.N., Dennis E.S. et al. The molecular basis of vernalization-induced fl owering in cereals // Trends Plant Sci. 2007. V. 12. P. 352–357.

27. Trevaskis B., Hemming M.N., Peacock W.J., Dennis E.S. HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status // Plant Physiol. 2006. V. 140. P. 1397–1405.

28. Turner A., Beales J., Faure S. et al. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley // Sci. 2005. V. 310. P. 1031–1034.

29. Yan L., Fu D., Li C., Blechl A. et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT // Proc. Natl Acad. Sci. USA. 2006. V. 103. P. 19581–19586.

30. Yan L., Loukoianov A., Blechl A. et al. The wheat VRN2 gene is a fl owering repressor down-regulated by vernalization // Sci. 2004. V. 303. Nо 5664. P. 1640–1644.

31. Yan L., Loukoianov A., Tranquilli G. et al. Positional cloning of wheat vernalization gene VRN1 // Proc. Natl Acad. Sci. USA. 2003. V. 100. P. 6263–6268.

32. Yu J.W., Rubio V., Lee N.Y. et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability // Mol. Cell. 2008. V. 32. P. 617–630.

33. Zhao X.Y., Liu M.S., Li J.R. et al. The wheat TaGI1, involved in photoperiodic fl owering, encodes an Arabidopsis GI ortholog // Plant Mol. Biol. 2005. V. 58. P. 53–64.


Review

Views: 780


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)