1. Адонина И.Г., Сусолкина Н.В., Тимонова Е.М., Христов Ю.А., Салина Е.А. Создание линий мягкой пшеницы с транслокациями от Aegilops speltoides Tausch и их оценка на устойчивость к листовой ржавчине // Генетика. 2012. Т. 48. № 4. С. 488-494.
2. Бадаева Е.Д., Прокофьева З.Д., Билинская Е.Н. и др. Цитогенетический анализ устойчивых к бурой ржавчине и мучнистой росе гибридов, полученных от скрещивания мягкой пшеницы (Triticum aestivum L., AABBDD) c пшеницами группы Timopheevi (AtAtGG) // Генетика. 2000. Т. 36. С. 1663-1673.
3. Патент RU 2484621. Способ создания линий мягкой пшеницы, устойчивых к бурой ржавчине / Салина Е.А., Леонова И.Н., Петраш Н.В., Адонина И.Г., Щербань А.Б. Опубл. 20.06.2013.
4. Удовенко Г.В. Диагностика устойчивости растений к стрессовым воздействиям. Методическое руководство. Л.: ВИР, 1988. 226 с.
5. Ashraf M. Inducing drought tolerance in plants: Recent advances // Biotechnol. Adv. 2010. V. 28. P. 169-183.
6. Bálint A.F., Szira F., Börner A., Galiba G. Segregation- and association based mapping of loci infl uencing osmotic tolerance in barley // Acta Biol. Szegediensis. 2008. V. 52. P. 101-102.
7. Baloch M.J., Dunwell J., Khakwani A.A., Dennet M., Jatoi W.A., Channa S.A. Assessment of wheat cultivars for drought tolerance via osmotic stress imposed at early seedling growth stages // J. Agric. Res. 2012. V. 50. P. 299-310.
8. Bartels D., Sunkar R. Drought and salt tolerance in plants // Crit. Rev. Plant Sci. 2005. V. 24. P. 23-58.
9. Bohnert H.J., Nelson D.E., Jensen R.G. Adaptations to environmental stresses // Plant Cell. 1995. V. 7. P. 1099-1111.
10. Budak H., Kantar M., Yucebilgili Kurtoglu K. Drought tolerance in modern and wild wheat // Sci. World J. 2013. V. 2013. Article number 548246.
11. Chaves M.M., Maroco J.P., Pereira J.S. Understanding plant responses to drought - from genes to the whole plant // Funct. Plant Biol. 2003. V. 30. P. 239-264.
12. Farshadfar E., Mohammadi R., Farshadfar M., Dabiri S. Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines // Aust. J. Crop Sci. 2013. V. 7. P. 130-138.
13. Feldman M., Sears E.R. The wild gene resources of wheat // Sci. Am. 1981. 244. P. 102-112.
14. Fleury D., Jefferies S., Kuchel H., Langridge P. Genetic and genomic tools to improve drought tolerance in wheat // J. Exp. Bot. 2010. V. 61. P. 3211-3222.
15. Leonova I.N., Budashkina E.B., Kalinina N.P., Röder M.S., Börner A., Salina E.A. Triticum aestivum-Triticum
16. timopheevii introgression lines as a source of pathogen resistance genes // Czech J. Genet. Plant Breed. 2011. V. 47. P. S49-S55.
17. McFadden E.S., Sears E.R. The genome approach in radical wheat breeding // J. Am. Soc. Agron. 1947. V. 39. P. 1011-1026.
18. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat, Yokohama, Japan, 2013. 197 p.
19. Mir R.R., Zaman-Allah M., Sreenivasulu N., Trethowan R., Varshney R.K. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops // Theor. Appl. Genet. 2012. V. 125. P. 625-645.
20. Money N.P. Osmotic pressure of aqueous polyethylene glycols // Plant Physiol. 1989. V. 91. P. 766-769.
21. Ogbonnaya F.C., Abdalla O., Mujeeb-Kazi A., Kazi A.G., Xu S.S., Gosman N., Lagudah E.S., Bonnett D., Sorrells M.E., Tsujimoto H. Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement // Plant Breed. Rev. 2013. V. 37. P. 35-122.
22. Osipova S.V., Permyakov A.V., Permyakova M.D., Davydov V.A., Pshenichnikova T.A., Börner A. Tolerance of prolonged drought among a set of bread wheat chromosome substituion lines // Cereal Res. Commun. 2011. V. 39. P. 343-351.
23. Osipova S.V., Permyakov A.V., Permyakova M.D., Pshenichnikova T.A., Genaev M.A., Börner A. The antioxidant enzymes activity in leaves of inter-varietal substitution lines of wheat (Triticum aestivum L.) with different tolerance to soil water defi cit // Acta Physiol. Plant. 2013. V. 35. P. 2455-2465.
24. Salina E.A., Petrash N.V., Timonova E.M., Adonina I.G. Markers-assisted indentifi cation of a new leaf rust resistance gene from Aegilops speltoides // Abstr. оf the 12th Intern. Wheat Genet. Symp. Japan, September 8-14, 2013. P. 170.
25. Schneider A., Molnar I., Molnar-Lang M. Utilization of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat // Euphytica. 2008. V. 163. P. 1-19.
26. Simon-Sarkadi L., Galiba G. Refl ection of environmental stresses on the amino acid composition of wheat // Perjodica Polytechnica Ser. Chem. Eng. 1996. V. 40. P. 79-86.
27. Singh H., Johnson R., Seth D. Genes for race-specific resistance to yellow rust (Puccinia striiformis) in Indian wheat cultivars // Plant Pathol. 1990 V. 39. P. 424-433.
28. Timonova E.M., Leonova I.N., Röder M.S., Salina E. Markerassisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome // Mol. Breed. 2013. V. 31. P. 123-136.
29. Todorovska E., Christov N., Slavov S., Christova P., Vassilev D. Biotic stress resistance in wheat - breeding and genomic selection implications // Biotechnol. Biotech. Eq. 2009. V. 23. P. 1417-1426.
30. Wang W., Vinocur B., Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance // Planta. 2003. V. 218. P. 1-14.