1. Angeloni A., Bogdanovic O. Enhancer DNA methylation: implications for gene regulation. Essays Biochem. 2019;63(6):707-715. https://doi.org/10.1042/EBC20190030.
2. Beck T., Shorter T., Brookes A.J. GWAS Central: a comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies. Nucleic Acids Res. 2020;48(D1):D933-D940. https://doi.org/10.1093/nar/gkz895.
3. Belokopytova P., Fishman V. Predicting genome architecture: challenges and solutions. Front. Genet. 2021. https://doi.org/10.3389/fgene.2020.617202.
4. Belokopytova P.S., Nuriddinov M.A., Mozheiko E.A., Fishman D., Fishman V. Quantitative prediction of enhancer-promoter interactions. Genome Res. 2020;30(1):72-84. https://doi.org/10.1101/gr.249367.119.
5. Benton M.C., Lea R.A., Macartney-Coxson D., Sutherland H.G., White N., Kennedy D., Mengersen K., Haupt L.M., Griffiths L.R. Genome-wide allele-specific methylation is enriched at gene regulatory regions in a multi-generation pedigree from the Norfolk Island isolate. Epigenetics Chromatin. 2019;12(1):60. https://doi.org/10.1186/s13072-019-0304-7.
6. Cavalli M., Baltzer N., Umer H.M., Grau J., Lemnian I., Pan G., Wallerman O., Spalinskas R., Sahlén P., Grosse I., Komorowski J., Wadelius C. Allele specific chromatin signals, 3D interactions, and motif predictions for immune and B cell related diseases. Sci. Rep. 2019;9(1):2695. https://doi.org/10.1038/s41598-019-39633-0.
7. Cavalli M., Pan G., Nord H., Wallén Arzt E., Wallerman O., Wadelius C. Allele-specific transcription factor binding in liver and cervix cells unveils many likely drivers of GWAS signals. Genomics. 2016a;107(6):248-254. https://doi.org/10.1016/j.ygeno.2016.04.006.
8. Cavalli M., Pan G., Nord H., Wallerman O., Wallén Arzt E., Berggren O., Elvers I., Eloranta M.L., Rönnblom L., Lindblad Toh K., Wadelius C. Allele-specific transcription factor binding to common and rare variants associated with disease and gene expression. Hum. Genet. 2016b;135(5):485-497. https://doi.org/10.1007/s00439-016-1654-x.
9. Chen C.-Y., Chang I.-S., Hsiung C.A., Wasserman W.W. On the identification of potential regulatory variants within genome wide association candidate SNP sets. BMC Med. Genomics. 2014;7:34. https://doi.org/10.1186/1755-8794-7-34.
10. Chen J., Rozowsky J., Galeev T.R., Harmanci A., Kitchen R., Bedford J., Abyzov A., Kong Y., Regan L., Gerstein M. A uniform survey of allele-specific binding and expression over 1000-GenomesProject individuals. Nat. Commun. 2016;18(7):11101. https://doi.org/10.1038/ncomms11101.
11. Chen L., Liang Y., Qiu J., Zhang L., Chen X., Luo X., Jiang J. Significance of rs1271572 in the estrogen receptor beta gene promoter and its correlation with breast cancer in a southwestern Chinese population. J. Biomed. Sci. 2013;20:32. https://doi.org/10.1186/1423-0127-20-32.
12. Claussnitzer M., Dankel S.N., Kim K.-H., Quon G., Meuleman W., Haugen C., Glunk V., Sousa I.S., Beaudry J.L., Puviindran V., Abdennur N.A., Liu J., Svensson P.-A., Hsu Y.-H., Drucker D.J., Mellgren G., Hui C.-Ch., Hauner H., Kellis M. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 2015; 373:895-907. https://doi.org/10.1056/NEJMoa1502214.
13. Cong Z., Li Q., Yang Y., Guo X., Cui L., You T. The SNP of rs6854845 suppresses transcription via the DNA looping structure alteration of super-enhancer in colon cells. Biochem. Biophys. Res. 2019;514: 734-741. https://doi.org/10.1016/j.bbrc.2019.04.190.
14. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74. https://doi.org/10.1038/nature11247.
15. Farh K.K.-H., Marson A., Zhu J., Kleinewietfeld M., Housley W.J., Beik S., Shoresh N., Whitton H., Ryan R.J.H., Shishkin A.A., Hatan M., Carrasco-Alfonso M.J., Mayer D., Luckey C.J., Patsopoulos N.A., De Jager P.L., Kuchroo V.K., Epstein C.B., Daly M.J., Hafler D.A., Bernstein B.E. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518(7539):337-343. https://doi.org/10.1038/nature13835.
16. Fishman V.S., Salnikov P.A., Battulin N.R. Interpreting chromosomal rearrangements in the context of 3-dimentional genome organization: a practical guide for medical genetics. Biochemistry. 2018; 83(4):393-401. https://doi.org/10.1134/S0006297918040107.
17. Gorbacheva A.M., Korneev K.V., Kuprash D.V., Mitkin N.A. The risk G allele of the single-nucleotide polymorphism rs928413 creates a CREB1-binding site that activates IL33 promoter in lung epithelial cells. Int. J. Mol. Sci. 2018;19(10):2911. https://doi.org/10.3390/ijms19102911.
18. Guo L., Wang J. rSNPBase 3.0: an updated database of SNP-related regulatory elements, element-gene pairs and SNP-based gene regulatory networks. Nucleic Acids Res. 2018;46(D1):D1111-D1116. https://doi.org/10.1093/nar/gkx1101.
19. Hansen A.S., Cattoglio C., Darzacq X., Tjian R. Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus. 2018; 9(1):20-32. https://doi.org/10.1080/19491034.2017.1389365.
20. Howard T.D., Mathias R.A., Seeds M.C., Herrington D.M., Hixson J.E., Shimmin L.C., Hawkins G.A., Sellers M., Ainsworth H.C., Sergeant S., Miller L.R., Chilton F.H. DNA methylation in an enhancer region of the FADS cluster is associated with FADS activity in human liver. PLoS One. 2014;9(5):e97510. https://doi.org/10.1371/journal.pone.0097510.
21. Ibrahim D.M., Mundlos S. Three-dimensional chromatin in disease: what holds us together and what drives us apart? Curr. Opin. Cell Biol. 2020;64:1-9. https://doi.org/10.1016/j.ceb.2020.01.003.
22. Izzi B., Pistoni M., Cludts K., Akkor P., Lambrechts D., Verfaillie C., Verhamme P., Freson K., Hoylaerts M.F. Allele-specific DNA methylation reinforces PEAR1 enhancer activity. Blood. 2016;128: 1003-1012. https://doi.org/10.1182/blood-2015-11-682153.
23. Jones P.L., Veenstra G.J., Wade P.A., Vermaak D., Kass S.U., Landsberger N., Strouboulis J., Wolffe A.P. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 1998;19:187-191. https://doi.org/10.1038/561.
24. Kilpinen H., Waszak S.M., Gschwind A.R., Raghav S.K., Witwicki R.M., Orioli A., Migliavacca E., Wiederkehr M., Gutierrez-Arcelus M., Panousis N., Yurovsky A., Lappalainen T., Romano-Palumbo L., Planchon A., Bielser D., Bryois J., Padioleau I., Udin G., Thurnheer S., Hacker D., Core L.J., Lis J.T., Hernandez N., Reymond A., Deplancke B., Dermitzakis E.T. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science. 2013;342:744-747. https://doi.org/10.1126/science.1242463.
25. Korneev K.V., Sviriaeva E.N., Mitkin N.A., Gorbacheva A.M., Uvarova A.N., Ustiugova A.S., Polanovsky O.L., Kulakovskiy I.V., Afanasyeva M.A., Schwartz A.M., Kuprash D.V. Minor C allele of the SNP rs7873784 associated with rheumatoid arthritis and type-2 diabetes mellitus binds PU.1 and enhances TLR4 expression. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866(3):165626. https://doi.org/10.1016/j.bbadis.2019.165626.
26. Kulakovskiy I.V., Vorontsov I.E., Yevshin I.S., Sharipov R.N., Fedorova A.D., Rumynskiy E.I., Medvedeva Y.A., Magana-Mora A., Bajic V.B., Papatsenko D.A., Kolpakov F.A., Makeev V.J. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2018;46(D1):D252-D259. https://doi.org/10.1093/nar/gkx1106.
27. Kumar D., Puan K.J., Andiappan A.K., Lee B., Westerlaken G.H., Haase D., Melchiotti R., Li Z., Yusof N., Lum J., Koh G., Foo S., Yeong J., Alves A.C., Pekkanen J., Sun L.D., Irwanto A., Fairfax B.P., Naranbhai V., Common J.E., Tang M., Chuang C.K., Jarvelin M.R., Knight J.C., Zhang X., Chew F.T., Prabhakar S., Jianjun L., Wang Y., Zolezzi F., Poidinger M., Lane E.B., Meyaard L., Rötzschke O. A functional SNP associated with atopic dermatitis controls cell type-specific methylation of the VSTM1 gene locus. Genome Med. 2017;9(1):18. https://doi.org/10.1186/s13073-017-0404-6.
28. Kumar S., Ambrosini G., Bucher P. SNP2TFBS - a database of regulatory SNPs affecting predicted transcription factor binding site affinity. Nucleic Acids Res. 2017;45(D1):D139-D144. https://doi.org/10.1093/nar/gkw1064.
29. Lee C.M., Barber G.P., Casper J., Clawson H., Diekhans M., Gonzalez J.N., Hinrichs A.S., Lee B.T., Nassar L.R., Powell C.C., Raney B.J., Rosenbloom K.R., Schmelter D., Speir M.L., Zweig A.S., Haussler D., Haeussler M., Kuhn R.M., Kent W.J. UCSC Genome Browser enters 20th year. Nucleic Acids Res. 2020;48(D1):D756-D761. https://doi.org/10.1093/nar/gkz1012.
30. Levitsky V.G., Kulakovskiy I.V., Ershov N.I., Oshchepkov D.Y., Makeev V.J., Hodgman T.C., Merkulova T.I. Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data. BMC Genom. 2014;15(1):80. https://doi.org/10.1186/1471-2164-15-80.
31. Lewinsky R.H., Jensen T.G.K., Møller J., Stensballe A., Olsen J., Troelsen J.T. T -13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum. Mol. Genet. 2005;14(24):3945-3953. https://doi.org/10.1093/hmg/ddi418.
32. Li S., Li Y., Li X., Liu J., Huo Y., Wang J., Liu Z., Li M., Luo X.-J. Regulatory mechanisms of major depressive disorder risk variants. Mol. Psychiatry. 2020;25(9):1926-1945. https://doi.org/10.1038/s41380-020-0715-7.
33. Lupiáñez D.G., Kraft K., Heinrich V., Krawitz P., Brancati F., Klopocki E., Horn D., Kayserili H., Opitz J.M., Laxova R., SantosSimarro F., Gilbert-Dussardier B., Wittler L., Borschiwer M., Haas S.A., Osterwalder M., Franke M., Timmermann B., Hecht J., Spielmann M., Visel A., Mundlos S. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 2015;161(5):1012-1025. https://doi.org/10.1016/j.cell.2015.04.004.
34. Mathelier A., Shi W., Wasserman W.W. Identification of altered cisregulatory elements in human disease. Trends Genet. 2015;31(2): 67-76. https://doi.org/10.1016/j.tig.2014.12.003.
35. Maurano M.T., Humbert R., Rynes E., Thurman R.E., Haugen E., Wang H., Reynolds A.P., Sandstrom R., Qu H., Brody J., Shafer A., Neri F., Lee K., Kutyavin T., Stehling-Sun S., Johnson A.K., Canfield T.K., Giste E., Diegel M., Bates D., Hansen R.S., Neph S., Sabo P.J., Heimfeld S., Raubitschek A., Ziegler S., Cotsapas C., Sotoodehnia N., Glass I., Sunyaev S.R., Kaul R., Stamatoyannopoulos J.A. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190-1195. https://doi.org/10.1126/science.1222794.
36. McVicker G., van de Geijn B., Degner J.F., Cain C.E., Banovich N.E., Raj A., Lewellen N., Myrthil M., Gilad Y., Pritchard J.K. Identification of genetic variants that affect histone modifications in human cells. Science. 2013;342:747-749. https://doi.org/10.1126/science.1242429.
37. Meddens C., van der List A.C.J., Nieuwenhuis E.E.S., Mokry M. Noncoding DNA in IBD: from sequence variation in DNA regulatory elements to novel therapeutic potential. Gut. 2019;68(5):928-941. https://doi.org/10.1136/gutjnl-2018-317516.
38. Mei S., Ke J., Tian J., Ying P., Yang N., Wang X., Zou D., Peng X., Yang Y., Zhu Y., Gong Y., Zhong R., Chang J., Miao X. A functional variant in the boundary of a topological association domain is associated with pancreatic cancer risk. Mol. Carcinog. 2019;58(10): 1855-1862. https://doi.org/10.1002/mc.23077.
39. Merkulov V.M., Leberfarb E.Y., Merkulova T.I. Regulatory SNPs and their widespread effects on the transcriptome. J. Biosci. 2018;43(5): 1069-1075. https://doi.org/10.1007/s12038-018-9817-7.
40. Nan X., Ng H.H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N., Bird A. Transcriptional repression by the methyl-CpGbinding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386-389. https://doi.org/10.1038/30764.
41. Park C.-Y., Halevy T., Lee D.R., Sung J.J., Lee J.S., Yanuka O., Benvenisty N., Kim D.-W. Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons. Cell. Rep. 2015;13(2):234-241. https://doi.org/10.1016/j.celrep.2015.08.084.
42. Quenneville S., Verde G., Corsinotti A., Kapopoulou A., Jakobsson J., Offner S., Baglivo I., Pedone P.V., Grimaldi G., Riccio A., Trono D. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell. 2011;44(3):361-372. https://doi.org/10.1016/j.molcel.2011.08.032.
43. Rahbar E., Waits C.M.K., Kirby E.H., Jr., Miller L.R., Ainsworth H.C., Cui T., Sergeant S., Howard T.D., Langefeld C.D., Chilton F.H. Allele-specific methylation in the FADS genomic region in DNA from human saliva, CD4+ cells, and total leukocytes. Clin. Epigenetics. 2018;10:46. https://doi.org/10.1186/s13148-018-0480-5.
44. Reddy T.E., Gertz J., Pauli F., Kucera K.S., Varley K.E., Newberry K.M., Marinov G.K., Mortazavi A., Williams B.A., Song L., Crawford G.E., Wold B., Willard H.F., Myers R.M. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res. 2012;22(5):860-869. https://doi.org/10.1101/gr.131201.111.
45. Roadmap Epigenomics Consortium, Kundaje A., Meuleman W., Ernst J., Bilenky M., Yen A., Heravi-Moussavi A., Kheradpour P., Zhang Z., Wang J., Ziller M.J., … Hirst M., Meissner A., Milosavljevic A., Ren B., Stamatoyannopoulos J.A., Wang T., Kellis M. Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518(7539):317-330. https://doi.org/10.1038/nature14248.
46. Rozowsky J., Abyzov A., Wang J., Alves P., Raha D., Harmanci A., Leng J., Bjornson R., Kong Y., Kitabayashi N., Bhardwaj N., Rubin M., Snyder M., Gerstein M. AlleleSeq: analysis of allele-specific expression and binding in a network framework. Mol. Syst. Biol. 2011;7:522. https://doi.org/10.1038/msb.2011.54.
47. Schmitz R.J., Lewis Z.A., Goll M.G. DNA methylation: shared and divergent features across eukaryotes. Trends Genet. 2019;35(11): 818-827. https://doi.org/10.1016/j.tig.2019.07.007.
48. Shi W., Fornes O., Mathelier A., Wasserman W.W. Evaluating the impact of single nucleotide variants on transcription factor binding. Nucleic Acids Res. 2016;44(21):10106-10116. https://doi.org/10.1093/nar/gkw691.
49. Smith A.J.P., Deloukas P., Munroe P.B. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits. Physiol. Genomics. 2018;50(7): 510-522. https://doi.org/10.1152/physiolgenomics.00028.2018.
50. Sun J.H., Zhou L., Emerson D.J., Phyo S.A., Titus K.R., Gong W., Gilgenast T.G., Beagan J.A., Davidson B.L., Tassone F., PhillipsCremins J.E. Disease-associated short tandem repeats co-localize with chromatin domain boundaries. Cell. 2018;175(1):224-238. https://doi.org/10.1016/j.cell.2018.08.005.
51. Visser M., Palstra R.J., Kayser M. Allele-specific transcriptional regulation of IRF4 in melanocytes is mediated by chromatin looping of the intronic rs12203592 enhancer to the IRF4 promoter. Hum. Mol. Genet. 2015;24(9):2649-2661. https://doi.org/10.1093/hmg/ddv029.
52. Vohra M., Sharma A.R., Prabhu B.N., Rai P.S. SNPs in sites for DNA methylation, transcription factor binding, and miRNA targets leading to allele-specific gene expression and contributing to complex disease risk: a systematic review. Public Health Genomics. 2020;23: 1-16. https://doi.org/10.1159/000510253.
53. Wang H., Lou D., Wang Z. Crosstalk of genetic variants, allele-specific DNA methylation, and environmental factors for complex disease risk. Front. Genet. 2019;9:695. https://doi.org/10.3389/fgene.2018.00695.
54. Ward L.D., Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(Database issue):D930-D934. https://doi.org/10.1093/nar/gkr917.
55. Waszak S.M., Kilpinen H., Gschwind A.R., Orioli A., Raghav S.K., Witwicki R.M., Migliavacca E., Yurovsky A., Lappalainen T., Hernandez N., Reymond A., Dermitzakis E.T., Deplancke B. Identification and removal of low-complexity sites in allele-specific analysis of ChIP-seq data. Bioinformatics. 2014;30(2):165-171. https://doi.org/10.1093/bioinformatics/btt667.
56. Wingender E., Schoeps T., Dönitz J. TFClass: an expandable hierarchical classification of human transcription factors. Nucleic Acids Res. 2013;41(D1):D165-D170. https://doi.org/10.1093/nar/gks1123.
57. Yates A.D., Achuthan P., Akanni W., Allen J., Allen J., Alvarez-Jarreta J., Amode M.R., Armean I.M., Azov A.G., Bennett R., Bhai J., … Perry E., Ruffier M., Trevanion S.J., Cunningham F., Howe K.L., Zerbino D.R., Flicek P. Ensembl 2020. Nucleic Acids Res. 2020; 48(D1):D682-D688. https://doi.org/10.1093/nar/gkz966.
58. Younesy H., Möller T., Heravi-Moussavi A., Cheng J.B., Costello J.F., Lorincz M.C., Karimi M.M., Jones S.J.M. ALEA: a toolbox for allele-specific epigenomics analysis. Bioinformatics. 2014;30(8): 1172-1174. https://doi.org/10.1093/bioinformatics/btt744.
59. Zhang Y., Manjunath M., Zhang S., Chasman D., Roy S., Song J.S. Integrative genomic analysis predicts causative cis-regulatory mechanisms of the breast cancer-associated genetic variant rs4415084. Cancer Res. 2018;78(7):1579-1591. https://doi.org/10.1158/0008-5472.CAN-17-3486.
60. Zhao T., Hu Y., Zang T., Wang Y. Integrate GWAS, eQTL, and mQTL data to identify Alzheimer’s disease-related genes. Front. Genet. 2019;10:1021. https://doi.org/10.3389/fgene.2019.01021.