1. Bürckert J.P., Dubois A.R.S.X., Faison W.J., Farinelle S., Charpentier E., Sinner R., Wienecke-Baldacchino A., Muller C.P. Functionally convergent B cell receptor sequences in transgenic rats expressing a human B cell repertoire in response to tetanus toxoid and measles antigens. Front. Immunol. 2017. https://doi.org/10.3389/fimmu.2017.01834.
2. Bushmanova E., Antipov D., Lapidus A., Przhibelskiy A.D. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. BioRxiv. 2018. https://doi.org/10.1101/420208.
3. Bushmanova E., Antipov D., Lapidus A., Suvorov V., Prjibelski A.D. rnaQUAST: a quality assessment tool for de novo transcriptome assemblies. Bioinformatics. 2016;32(14):2210-2212. https://doi.org/10.1093/bioinformatics/btw218.
4. Cerveau N., Jackson D.J. Combining independent de novo assemblies optimizes the coding transcriptome for nonconventional model eukaryotic organisms. BMC Bioinform. 2016;17:525. PMid: 27938328. https://doi.org/10.1186/s12859-016-1406-x.
5. Chang Z., Wang Z., Li G. The impacts of read length and transcriptome complexity for de novo assembly: a simulation study. PLoS One. 2014;9(4):e94825. PMid: 24736633. https://doi.org/10.1371/journal.pone.0094825.
6. Cui J., Shen N., Lu Z., Xu G., Wang Y., Jin B. Analysis and comprehensive comparison of PacBio and nanopore-based RNA sequencing of the Arabidopsis transcriptome. Plant Methods. 2020;16:85. https://doi.org/10.1186/s13007-020-00629-x.
7. vEngström P.G., Steijger T., Sipos B., Grant G.R., Kahles A., Rätsch G., Goldman N., Hubbard T.J., Harrow J., Guigó R., Bertone P., Alioto T., Behr J., Bohnert R., Campagna D., Davis C.A., Dobin A., Gingeras T.R., Jean G., Kosarev P., Li S., Liu J., Mason C.E., Molodtsov V., Ning Z., Ponstingl H., Prins J.F., Ribeca P., Seledtsov I., Solovyev V., Valle G., Vitulo N., Wang K., Wu T.D., Zeller G. Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods. 2013;10:1185-1191. PMid: 24185836. https://doi.org/10.1038/nmeth.2722.
8. Evangelistella C., Valentini A., Ludovisi R., Firrincieli A., Fabbrini F., Scalabrin S., Cattonaro F., Morgante M., Mugnozza G.S., Keurentjes J.J.B., Harfouche A. De novo assembly, functional annotation, and analysis of the giant reed (Arundo donax L.) leaf transcriptome provide tools for the development of a biofuel feedstock. Biotechnol. Biofuels. 2017;10:138. https://doi.org/10.1186/s13068-017-0828-7.
9. Fu S., Ma Y., Yao H., Xu Z., Chen S., Song J., Au K.F. IDP-denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing. Bioinformatics. 2018;34(13):2168-2176. PMid: 28407034. https://doi.org/10.1093/bioinformatics/bty098.
10. Gilbert D.G. Genes of the pig, Sus scrofa, reconstructed with EvidentialGene. PeerJ. 2019;7:e6374. https://doi.org/10.7717/peerj.6374.
11. Glagoleva A.Y., Shmakov N.A., Shoeva O.Y., Vasiliev G.V., Shatskaya N.V., Börner A., Afonnikov D.A., Khlestkina E.K. Metabolic pathways and genes identified by RNA-seq analysis of barley near-isogenic lines differing by allelic state of the Black lemma and pericarp (Blp) gene. BMC Plant Biol. 2017;17:182. https://doi.org/10.1186/s12870-017-1124-1.
12. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2013;29:644-652. PMid: 21572440. https://doi.org/10.1038/nbt.1883.Trinity.
13. Hölzer M., Marz M. De novo transcriptome assembly: a comprehensive cross-species comparison of short-read RNA-Seq assemblers. GigaScience. 2019;8(5):giz039. PMid: 31077315. https://doi.org/10.1093/gigascience/giz039.
14. Honaas L.A., Wafula E.K., Wickett N.J., Der J.P., Zhang Y., Edger P.P., Altman N.S., Chris Pires J., Leebens-Mack J.H., DePamphilis C.W. Selecting superior de novo transcriptome assemblies: lessons learned by leveraging the best plant genome. PLoS One. 2016;11(1):e0146062. PMid: 26731733. https://doi.org/10.1371/journal.pone.0146062.
15. Hrdlickova R., Toloue M., Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA. 2017;8:e1364. PMid: 27198714. https://doi.org/10.1002/wrna.1364.
16. Jain P., Krishnan N.M., Panda B. Augmenting transcriptome assembly by combining de novo and genome-guided tools. PeerJ. 2013;1: e133. PMid: 24024083. https://doi.org/10.7717/peerj.133.
17. Lafond-Lapalme J., Duceppe M.O., Wang S., Moffett P., Mimee B. A new method for decontamination of de novo transcriptomes using a hierarchical clustering algorithm. Bioinformatics. 2017;33(9): 1293-1300. PMid: 28011783. https://doi.org/10.1093/bioinformatics/btw793.
18. Lahens N.F., Ricciotti E., Smirnova O., Toorens E., Kim E.J., Baruzzo G., Hayer K.E., Ganguly T., Schug J., Grant G.R. A comparison of Illumina and Ion Torrent sequencing platforms in the context of differential gene expression. BMC Genom. 2017;18:602. PMid: 28797240. https://doi.org/10.1186/s12864-017-4011-0.
19. Lee S., La T.M., Lee H.J., Choi I.S., Song C.S., Park S.Y., Lee J.B., Lee S.W. Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci. Rep. 2019;9:6838. PMid: 31048728. https://doi.org/10.1038/s41598-019-43280-w.
20. Li Z., Chen Y., Mu D., Yuan J., Shi Y., Zhang H., Gan J., Li N., Hu X., Liu B., Yang B., Fan W. Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Brief Funct. Genomics. 2012;11(1):25-37. PMid: 22184334. https://doi.org/10.1093/bfgp/elr035.
21. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal. 2011;17(1):10-12. PMid: 1000006697. https://doi.org/10.14806/ej.17.1.200.
22. Payá-Milans M., Olmstead J.W., Nunez G., Rinehart T.A., Staton M. Comprehensive evaluation of RNA-Seq analysis pipelines in diploid and polyploid species. GigaScience. 2018;7(12):giy132. PMid: 30418578. https://doi.org/10.1093/gigascience/giy132.
23. Robertson G., Schein J., Chiu R., Corbett R., Field M., Jackman S.D., Mungall K., Lee S., Okada H.M., Qian J.Q., Griffith M., Raymond A., Thiessen N., Cezard T., Butterfield Y.S., Newsome R., Chan S.K., She R., Varhol R., Kamoh B., Prabhu A.L., Tam A., Zhao Y., Moore R.A., Hirst M., Marra M.A., Jones S.J.M., Hoodless P.A., Birol I. De novo assembly and analysis of RNA-seq data. Nat. Methods. 2010;7(11):909-912. https://doi.org/10.1038/nmeth.1517.
24. Salina E.A., Nesterov M.A., Frenkel Z., Kiseleva A.A., Timonova E.M., Magni F., Vrána J., Šafár J., Šimková H., Doležel J., Korol A., Sergeeva E.M. Features of the organization of bread wheat chromosome 5BS based on physical mapping. BMC Genom. 2018; 19:80. PMid: 29504906. https://doi.org/10.1186/s12864-018-4470-y.
25. Schliesky S., Gowik U., Weber A.P.M., Bräutigam A. RNA-seq assembly - are we there yet? Front. Plant Sci. 2012;3:220. https://doi.org/10.3389/fpls.2012.00220.
26. Schmieder R., Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863-864. PMid: 21278185. https://doi.org/10.1093/bioinformatics/btr026.
27. Schulz M.H., Zerbino D.R., Vingron M., Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086-1092. PMid: 22368243. https://doi.org/10.1093/bioinformatics/bts094.
28. Shekhovtsov S.V., Ershov N.I., Vasiliev G.V., Peltek S.E. Transcriptomic analysis confirms differences among nuclear genomes of cryptic earthworm lineages living in sympatry. BMC Evol. Biol. 2019; 19:50. PMid: 30813890. https://doi.org/10.1186/s12862-019-1370-y.
29. Shmakov N.A., Vasiliev G.V., Shatskaya N.V., Doroshkov A.V., Gordeeva E.I., Afonnikov D.A., Khlestkina E.K. Identification of nuclear genes controlling chlorophyll synthesis in barley by RNA-seq. BMC Plant Biol. 2016;16. https://doi.org/10.1186/s12870-016-0926-x.
30. Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31: 3210-3212. PMid: 26059717. https://doi.org/10.1093/bioinformatics/btv351.
31. Smith-Unna R., Boursnell C., Patro R., Hibberd J.M., Kelly S. TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res. 2016;26:1134-1144. PMid: 27252236. https://doi.org/10.1101/gr.196469.115.
32. Venturini L., Caim S., Kaithakottil G.G., Mapleson D.L., Swarbreck D. Leveraging multiple transcriptome assembly methods for improved gene structure annotation. GigaScience. 2018;7(8):giy093. PMid: 30052957. https://doi.org/10.1093/gigascience/giy093.
33. Wang S., Gribskov M. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis. Bioinformatics. 2017;33(3):327-333. PMid: 27694201. https://doi.org/10.1093/bioinformatics/btw625.
34. Xie Y., Wu G., Tang J., Luo R., Patterson J., Liu S., Huang W., He G., Gu S., Li S., Zhou X., Lam T.W., Li Y., Xu X., Wong G.K.S., Wang J. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30(12):1660-1666. https://doi.org/10.1093/bioinformatics/btu077.