Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The auxin signaling pathway to its PIN transporters: insights based on a meta-analysis of auxin-induced transcriptomes

https://doi.org/10.18699/VJ21.005

Abstract

Active polar transport of the plant hormone auxin carried out by its PIN transporters is a key link in the formation and maintenance of auxin distribution, which, in turn, determines plant morphogenesis. The plasticity of auxin distribution is largely realized through the molecular genetic regulation of the expression of its transporters belonging to the PIN-FORMED (PIN) protein family. Regulation of auxin-response genes occurs through the ARF-Aux/IAA signaling pathway. However, it is not known which ARF-Aux/IAA proteins are involved in the regulation of PIN gene expression by auxin. In Arabidopsis thaliana, the PIN, ARF, and Aux/IAA families contain a larger number of members; their various combinations are possible in realization of the signaling pathway, and this is a challenge for understanding the mechanisms of this process. The use of high-throughput sequencing data on auxin-induced transcriptomes makes it possible to identify candidate genes involved in the regulation of PIN expression. To address this problem, we created an approach for the meta-analysis of auxin-induced transcriptomes, which helped us select genes that change their expression during the auxin response together with PIN1, PIN3, PIN4 and PIN7. Possible regulators of ARF-Aux/IAA signaling pathway for each of the PINs under study were identif ied, and so were the aspects of their regulatory circuits both common for groups of PIN genes and specif ic for each PIN gene. Reconstruction of gene networks and their analysis predicted possible interactions between genes and served as an additional conf irmation of the pathways obtained in the meta-analysis. The approach developed can be used in the search for gene expression regulators in other genomewide data.

About the Authors

V. V. Kovrizhnykh
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


Z. S. Mustafin
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


Z. Z. Bagautdinova
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


References

1. Calderon-Villalobos L.I., Tan X., Zheng N., Estelle M. Auxin perception – structural insights. Cold Spring Harb. Perspect. Biol. 2010;2: a005546-a005546. DOI 10.1101/cshperspect.a005546.

2. Campanoni P., Nick P. Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol. 2005;137:939-948. DOI 10.1104/pp.104.053843.

3. Cherenkov P., Novikova D., Omelyanchuk N., Levitsky V., Grosse I., Weijers D., Mironova V. Diversity of cis-regulatory elements associated with auxin response in Arabidopsis thaliana. J. Exp. Bot. 2018; 69:329-339. DOI 10.1093/jxb/erx254.

4. Dharmasiri N., Dharmasiri S., Estelle M. The F-box protein TIR1 is an auxin receptor. Nature. 2005;435:441-445. DOI 10.1038/nature03543.

5. Dhonukshe P. PIN polarity regulation by AGC-3 kinases and ARFGEF. Plant Signal. Behav. 2011;6:1333-1337. DOI 10.4161/psb.6.9.16611.

6. Feraru E., Friml J. PIN polar targeting. Plant Physiol. 2008;147:15531559. DOI 10.1104/pp.108.121756.

7. Fernandez A., Hilson P., Beeckman T. GOLVEN peptides as important regulatory signalling molecules of plant development. J. Exp. Bot. 2013;64:5263-5268. DOI 10.1093/jxb/ert248.

8. Friml J. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science. 2004;306:862-865. DOI 10.1126/science.1100618.

9. Geldner N., Friml J., Stierhof Y.-D., Jürgens G., Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 2001;413:425-428. DOI 10.1038/35096571.

10. Grieneisen V.A., Xu J., Marée A.F.M., Hogeweg P., Scheres B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature. 2007;449:1008-1013. DOI 10.1038/nature06215.

11. Guilfoyle T.J., Hagen G. Auxin response factors. Curr. Opin. Plant Biol. 2007;10:453-460. DOI 10.1016/j.pbi.2007.08.014.

12. Habets M.E.J., Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol. 2014;203:362-377. DOI 10.1111/nph.12831.

13. Hamann T. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 2002;16:1610-1615. DOI 10.1101/gad.229402.

14. Hayashi K. The interaction and integration of auxin signaling components. Plant Cell Physiol. 2012;53:965-975. DOI 10.1093/pcp/pcs035.

15. Kepinski S., Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature. 2005;435:446-451. DOI 10.1038/nature03542.

16. Krizek B.A. Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family. J. Exp. Bot. 2011;62:3311-3319. DOI 10.1093/jxb/err127.

17. Liu W., Li R.-J., Han T.-T., Cai W., Fu Z.-W., Lu Y.-T. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol. 2015;168:343-356. DOI 10.1104/pp.15.00030.

18. Mironova V.V., Omelyanchuk N.A., Yosiphon G., Fadeev S.I., Kolchanov N.A., Mjolsness E., Likhoshvai V.A. A plausible mechanism for auxin patterning along the developing root. BMC Syst. Biol. 2010; 4:98. DOI 10.1186/1752-0509-4-98.

19. Mroue S., Simeunovic A., Robert H.S. Auxin production as an integrator of environmental cues for developmental growth regulation. J. Exp. Bot. 2018;69:201-212. DOI 10.1093/jxb/erx259.

20. Omelyanchuk N.A., Kovrizhnykh V.V., Oshchepkova E.A., Pasternak T., Palme K., Mironova V.V. A detailed expression map of the PIN1 auxin transporter in Arabidopsis thaliana root. BMC Plant Biol. 2016;16:5. DOI 10.1186/s12870-015-0685-0.

21. Omelyanchuk N.A., Wiebe D.S., Novikova D.D., Levitsky V.G., Klimova N., Gorelova V., Weinholdt C., Vasiliev G.V., Zemlyanskaya E.V., Kolchanov N.A., Kochetov A.V., Grosse I., Mironova V.V. Auxin regulates functional gene groups in a fold-change-specific manner in Arabidopsis thaliana roots. Sci. Rep. 2017;7:2489. DOI 10.1038/s41598-017-02476-8.

22. Pan X., Chen J., Yang Z. Auxin regulation of cell polarity in plants. Curr. Opin. Plant Biol. 2015;28:144-153. DOI 10.1016/j.pbi.2015.10.009.

23. Paponov I.A., Paponov M., Teale W., Menges M., Chakrabortee S., Murray J.A.H., Palme K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol. Plant. 2008;1:321-337. DOI 10.1093/mp/ssm021.

24. Petrasek J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science. 2006;312:914-918. DOI 10.1126/science.1123542.

25. Remington D.L., Vision T.J., Guilfoyle T.J., Reed J.W. Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol. 2004;135:1738-1752. DOI 10.1104/pp.104.039669.

26. Sauer M., Balla J., Luschnig C., Wisniewska J., Reinohl V., Friml J., Benkova E. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 2006;20:2902-2911. DOI 10.1101/gad.390806.

27. Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., HuertaCepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47: D607-D613. DOI 10.1093/nar/gky1131.

28. Teale W.D., Paponov I.A., Palme K. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 2006;7:847-859. DOI 10.1038/nrm2020.

29. Ulmasov T., Murfett J., Hagen G., Guilfoyle T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 1997;9:1963-1971. DOI 10.1105/tpc.9.11.1963.

30. Vanneste S., Friml J. Auxin: a trigger for change in plant development. Cell. 2009;136:1005-1016. DOI 10.1016/j.cell.2009.03.001.

31. Vieten A., Sauer M., Brewer P.B., Friml J. Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci. 2007;12:160-168. DOI 10.1016/j.tplants.2007.03.006.

32. Vieten A., Vanneste S., Wisniewska J., Benkova E., Benjamins R., Beeckman T., Luschnig C., Friml J. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development. 2005;132:4521-4531. DOI 10.1242/dev.02027.

33. Weijers D., Franke-van Dijk M., Vencken R.J., Quint A., Hooykaas P., Offringa R. An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development. 2001;128:4289-4299.

34. Wenzel C.L., Schuetz M., Yu Q., Mattsson J. Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J. 2007;49:387-398. DOI 10.1111/j.1365-313X.2006.02977.x.

35. Whitford R., Fernandez A., Tejos R., Pérez A.C., Kleine-Vehn J., Vanneste S., Drozdzecki A., Leitner J., Abas L., Aerts M., Hoogewijs K., Baster P., De Groodt R., Lin Y.-C., Storme V., Van de Peer Y., Beeckman T., Madder A., Devreese B., Luschnig C., Friml J., Hilson P. GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses. Dev. Cell. 2012;22:678-685. DOI 10.1016/j.devcel.2012.02.002.

36. Xu J., Hofhuis H., Heidstra R., Sauer M., Friml J., Scheres B. A molecular framework for plant regeneration. Science. 2006;311:385-388. DOI 10.1126/science.1121790.


Review

Views: 879


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)