Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Phylostratigraphic analysis of gene networks of human diseases

https://doi.org/10.18699/VJ21.006

Abstract

Phylostratigraphic analysis is an approach to the study of gene evolution that makes it possible to determine the time of the origin of genes by analyzing their orthologous groups. The age of a gene belonging to an orthologous group is def ined as the age of the most recent ancestor of all species represented in that group. Such an analysis can reveal important stages in the evolution of both the organism as a whole and groups of functionally related genes, in particular gene networks. In addition to investigating the time of origin of a gene, the level of its genetic variability and what type of selection the gene is subject to in relation to the most closely related organisms is studied. Using the Orthoscape application, gene networks from the KEGG Pathway, Human Diseases database describing various human diseases were analyzed. It was shown that the majority of genes described in gene networks are under stabilizing selection and a high reliable correlation was found between the time of gene origin and the level of genetic variability: the younger the gene, the higher the level of its variability is. It was also shown that among the gene networks analyzed, the highest proportion of evolutionarily young genes was found in the networks associated with diseases of the immune system (65 %), and the highest proportion of evolutionarily ancient genes was found in the networks responsible for the formation of human dependence on substances that cause addiction to chemical compounds (88 %); gene networks responsible for the development of infectious diseases caused by parasites are signif icantly enriched for evolutionarily young genes, and gene networks responsible for the development of specif ic types of cancer are signif icantly enriched for evolutionarily ancient genes.

About the Authors

Z. S. Mustafin
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


S. A. Lashin
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


Yu. G. Matushkin
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


References

1. Bell E.A., Boehnke P., Harrison T.M., Mao W.L. Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA. 2015;112:14518-14521. DOI 10.1073/pnas.1517557112.

2. Cerami E.G., Gross B.E., Demir E., Rodchenkov I., Babur Ö., Anwar N., Schultz N., Bader G.D., Sander C. Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 2011;39: 685-690. DOI 10.1093/nar/gkq1039.

3. Chatterjee H.J., Ho S.Y., Barnes I., Groves C. Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol. Biol. 2009;9:259. DOI 10.1186/1471-2148-9-259.

4. Datta P.M. Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India. J. Vertebr. Paleontol. 2005;25:200-207. DOI 10.1671/0272-4634(2005)025(0200:EMWTEU)2.0.CO;2.

5. Diogo R. The Origin of Higher Clades: Osteology, Myology, Phylogeny and Evolution of Bony Fishes and the Rise of Tetrapods. New York: CRC Press, 2007.

6. Domazet-Lošo T., Brajković J., Tautz D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 2007;23:533-539. DOI 10.1016/j.tig.2007.08.014.

7. Domazet-Lošo T., Tautz D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 2010;8:66.

8. Dunn R.H., Rose K.D., Rana R.S., Kumar K., Sahni A., Smith T. New euprimate postcrania from the early Eocene of Gujarat, India, and the strepsirrhine-haplorhine divergence. J. Hum. Evol. 2016;99: 25-51.

9. Galaktionov V.G. Immunology: a Guide for University Students Studying in Track 510600 “Biology” and Biological Specialties. Moscow: Academia Publ., 2004. (in Russian)

10. Harrison T. Catarrhine origins. In: A Companion to Paleoanthropology. New York: Blackwell Publ. Ltd., 2013;376-396.

11. Hey J. The ancestor’s tale A pilgrimage to the dawn of evolution. J. Clin. Invest. 2005;115:1680-1680.

12. Kanehisa M., Furumichi M., Tanabe M., Sato Y., Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353-D361.

13. Khaitov R.M. Immunology: a Guide for Students of Medical Universities. Мoscow, 2016. (in Russian)

14. Khakoo S.I. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science. 2004;305(5685):872-874.

15. Kolchanov N.A., Ignat’eva E.V., Podkolodnaya O.A., Likhoshvay V.A., Matushkin Yu.G. Gene Networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2):833-850. (in Russian)

16. Kumar V., Hallström B.M., Janke A. Coalescent-based genome analyses resolve the early branches of the euarchontoglires. PLoS One. 2013;8(4):e60019.

17. Leander B.S. Predatory protists. Curr. Biol. 2020;30:R510-R516.

18. Li W.-H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J. Mol. Evol. 1993;36(1):96-99.

19. Li W.H., Wu C.I., Luo C.C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 1985;2(2):150-174.

20. Liebeskind B.J., McWhite C.D., Marcotte E.M. Towards consensus gene ages. Genome Biol. Evol. 2016;8(6):1812-1823.

21. Luo Z.-X., Yuan C.-X., Meng Q.-J., Ji Q. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature. 2011;476: 442-445.

22. Maloof A.C., Porter S.M., Moore J.L., Dudas F.O., Bowring S.A., Higgins J.A., Fike D.A., Eddy M.P. The earliest Cambrian record of animals and ocean geochemical change. Geol. Soc. Am. Bull. 2010a; 122:1731-1774.

23. Maloof A.C., Rose C.V., Beach R., Samuels B.M., Calmet C.C., Erwin D.H., Poirier G.R., Yao N., Simons F.J. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nat. Geosci. 2010b;3:653-659.

24. Montojo J., Zuberi K., Rodriguez H., Kazi F., Wrig G., Donaldson S.L., Morris Q., Bader G.D. GeneMANIA cytoscape plugin: Fast gene function predictions on the desktop. Bioinformatics. 2010;26:29272928.

25. Mustafin Z.S., Lashin S.A., Matushkin Y.G., Gunbin K.V., Afonnikov D.A. Orthoscape: a cytoscape application for grouping and visualization KEGG based gene networks by taxonomy and homology principles. BMC Bioinformatics. 2017;18(S1):1-9.

26. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 1986;3:418-426.

27. Nersisyan L., Samsonyan R., Arakelyan A. CyKEGGParser: tailoring KEGG pathways to fit into systems biology analysis workflows. F1000Res. 2014;3:145.

28. Pamilo P., Bianchi N.O. Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol. Biol. Evol. 1993;10(2): 271-281.

29. Sasaki K., Tsutsumi A., Wakamiya N. Mannose-binding lectin polymorphisms in patients with hepatitis C virus infection. Scand. J. Gastroenterol. 2000;35(9):960-965.

30. Scerri E.M.L., Thomas M.G., Manica A., Gunz P., Stock J.T., Stringer C., Grove M., Groucutt H.S., Timmermann A., Rightmire G.P., D’Errico F., Tryon C.A., Drake N.A., Brooks A.S., Dennell R.W., Durbin R., Henn B.M., Lee-Thorp J., DeMenocal P., Petraglia M.D., Thompson J.C., Scally A., Chikhi L. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 2018;33(8):582-594.

31. Schrenk F., Kullmer O., Bromage T. The earliest putative homo fossils. In: Handbook of Paleoanthropology. Berlin; Heidelberg: Springer, 2014;1-19.

32. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-2504.

33. Shu D.-G., Luo H.-L., Conway Morris S., Zhang X.-L., Hu S.-X., Chen L., Han J., Zhu M., Li Y., Chen L.-Z. Lower Cambrian vertebrates from south China. Nature. 1999;402(6757):42-46.

34. Stepanov V.A. Evolution of genetic diversity and human diseases. Russ. J. Genet. 2016;52(7):746-756.

35. Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., Jensen L.J., von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47(D1):D607-D613.

36. Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24(8):1586-1591.

37. Yang Z., Nielsen R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 2000;17(1):32-43.

38. Zheleznikova G.F. Infection and immunity: strategies from both sides. Med. Immunol. 2014;8(5-6):597-614. DOI 10.15789/1563-06252006-5-6-597-614. (in Russian)


Review

Views: 769


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)