Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Пангеномы сельскохозяйственных растений

https://doi.org/10.18699/VJ21.007

Полный текст:

Аннотация

Cеквенирование генома организма – важный этап в его генетических исследованиях. Расшифровка геномной последовательности открывает широкие возможности для изучения строения структуры хромосом, распределения повторенных и кодирующих последовательностей, идентификации и аннотации генов. При исследовании сельскохозяйственных растений это позволяет анализировать функции генов, разрабатывать маркеры для поиска ассоциаций с фенотипическими признаками. При решении этих задач геном вида часто представлен последовательностью одного организма (так называемым референсным геномом). В последнее время, однако, появляется много свидетельств в пользу того, что большие структурные изменения генома, включая вариации числа копий генов и вариации наличия/отсутствия генов, преобладают в сельскохозяйственных культурах, играют ключевую роль в генетическом определении агрономически важных признаков и приводят к значительным вариациям функционального набора генов и генного состава у представителей одного вида. Такие структурные вариации не могут быть представлены на основе одной лишь референсной последовательности и описываются исходя из концепции пангенома. Пангеном – это информация о полном наборе генов таксона, среди которых можно выделить набор универсальных генов, общих для всех представителей таксона, и вариабельных генов, которые являются частично или полностью специфичными для его представителей. Анализ пангеномов дает более точное понимание генетического разнообразия генофонда. Технологии секвенирования и анализа пангеномов позволяют обеспечить возможность масштабного изучения геномных вариаций, доступ к более широкому спектру геномных данных в селекционных программах и помогут ускорить селекцию культурных растений для создания сортов со стабильно высокой урожайностью и устойчивостью к стрессам. В работе представлен краткий обзор исследования пангеномов сельскохозяйственных растений, описаны их структурные особенности, методы и программы биоинформатического анализа пангеномных данных.

Об авторах

А. Ю. Пронозин
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


М. К. Брагина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр Института цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Е. А. Салина
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр Института цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Список литературы

1. Alcaraz L.D., Moreno-Hagelsieb G., Eguiarte L.E., Souza V., HerreraEstrella L., Olmedo G. Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC Genomics. 2010;11(1):332.

2. Bragina M.K., Afonnikov D.A., Salina E.A. Progress in plant genome sequencing: research directions. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(1):38-48. DOI 10.18699/VJ19.459. (in Russian)

3. Butler J., MacCallum I., Kleber M., Shlyakhter I.A., Belmonte M.K., Lander E.S., Nusbaum C., Jaffe D.B. ALLPATHS: de novo assembly of whole-genome shotgun microreads. Genome Res. 2008;18(5): 810-820. DOI 10.1101/gr.7337908.

4. Chaudhari N.M., Gupta V.K., Dutta C. BPGA-an ultra-fast pan-genome analysis pipeline. Sci. Rep. 2019;6(1):1-10. DOI 10.1038/srep24373.

5. Ding W., Baumdicker F., Neher R.A. panX: pan-genome analysis and exploration. Nucleic Acids Res. 2018;46(1):e5-e5. DOI 10.1093/nar/gkx977.

6. Gao L., Gonda I., Sun H., Ma Q., Bao K., Tieman D.M., Thannhauser T.W., Burzynski-Chang E.A., Fish T.L., Stromberg K.A., Sacks G.L., Foolad M.R., Diez M.J., Blanca J., Canizares J., Xu Y., Knaap E., Huang S., Klee H.J., Giovannoni J.J., Fei Z. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 2019;51(6). DOI 1044.10.1038/s41588-019-0410-2.

7. Golicz A.A., Batley J., Edwards D. Towards plant pangenomics. Plant Biotechnol. J. 2016;14(4):1099-1105. DOI 10.1111/pbi.12499.

8. Goncharov N.P. Plants domestication. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2): 884-899. 2013;17(4/2):884-899. (in Russian)

9. Goncharov N.P., Kondratenko E.Ja. Wheat origin, domestication and evolution. Informatcionniy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2008;12(1-2):159-179. (in Russian)

10. Gordon S.P., Contreras-Moreira B., Woods D.P., Des Marais D.L., Burgess D., Shu S., Stritt C., Roulin A.C., Schackwitz W., Tyler L., Martin J., Lipzen A., Dochy N., Phillips J., Barry K., Geuten K., Budak H., Juenger T.E., Amasino R., Caicedo A.L., Goodstein D., Davidson P., Mur L.A.J., Figueroa M., Freeling M., Catalan P., Vogel J.P. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat. Commun. 2017;8(1):2184. DOI 10.1038/s41467-017-02292-8.

11. Hirsch C.N., Foerster J.M., Johnson J.M., Sekhon R.S., Muttoni G., Vaillancourt B., Peñagaricano F., Lindquist E., Pedraza M., Barry K., Leon N., Kaeppler Sh.M., Buell R.C. Insights into the maize pangenome and pan-transcriptome. Plant Cell. 2014;26(1):121-135. https://doi.org/10.1105/tpc.113.119982.

12. Howe K.L., Contreras-Moreira B., De Silva N., Maslen G., Akanni W., Allen J., Carbajo M. Ensembl Genomes 2020 – enabling non-vertebrate genomic research. Nucleic Acids Res. 2020;48(D1):D689-D695. DOI 10.1093/nar/gkz890.

13. Hübner S., Bercovich N., Todesco M., Mandel J.R., Odenheimer J., Ziegler E., Lee J.S., Baute G.J., Owens G.L., Grassa C.J., Ebert D.P., Ostevik K.L., Moyers B.T., Yakimowski S., Masalia R.R., Gao L., Ćalić I., Bowers J.E., Kane N.C., Swanevelder D.Z.H., Kubach T., Muños S., Langlade N.B., Burke J.M., Rieseberg L.H. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat. Plants. 2019;5(1):54-69. DOI 10.1038/s41477-018-0329-0.

14. Hurgobin B., Edwards D. SNP discovery using a pangenome: has the single reference approach become obsolete. Biology. 2017;6(1):21. DOI 10.3390/biology6010021.

15. Hurgobin B., Golicz A.A., Bayer P.E., Chan C.K., Tirnaz S., Dolatabadian A., Schiessl S.V., Samans B., Montenegro J.D., Parkin I.A., Pires J.C. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol. J. 2018;16(7):1265-1274. DOI 10.1111/pbi.12867.

16. Jin M., Liu H., He C., Fu J., Xiao Y., Wang Y., Xie W., Wang G., Yan J. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Sci. Rep. 2016;6:18936. DOI 10.1038/srep18936.

17. Li C., Lin F., An D., Wang W., Huang R. Genome sequencing and assembly by long reads in plants. Genes. 2018;9(1):6. DOI 10.3390/genes9010006.

18. Li R., Zhu H., Ruan J., Qian W., Fang W., Shi Z., Li Y., Li Sh., Shan G., Kristiansen K., Li S., Yang H., Wang J., Wang J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20(2):265-272. DOI 10.1101/gr.097261.109.

19. Li Y.H., Zhou G., Ma J., Jiang W., Jin L.G., Zhang Z., Guo Y., Zhang J., Sui Y., Zheng L., Zhang S.S. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 2014;32(10):1045. DOI 10.1038/nbt.2979.

20. Liu Y., Du H., Li P., Shen Y., Peng H., Liu S., Zhou G., Zhang H., Liu Z., Shi M., Huang X., Li Y., Zhang M., Wang Z., Zhu B., Han B., Liang C., Tian Z. Pan-genome of wild and cultivated soybeans. Cell. 2020;182(1):162-176. DOI 10.1016/j.cell.2020.05.023.

21. Lu F., Romay M.C., Glaubitz J.C., Bradbury P.J., Elshire R.J., Wang T., Li Y., Li Y., Semagn K., Zhang X., Hernandez A.G. High-resolution genetic mapping of maize pan-genome sequence anchors. Nat. Commun. 2015;6:6914. DOI 10.1038/ncomms7914.

22. Ma Y., Liu M., Stiller J., Liu Ch. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC Genomics. 2019;20(1):12. https://doi.org/10.1186/s12864-018-5357-7.

23. Marchant D.B., Soltis D.E., Soltis P.S. Genome evolution in plants. eLS. 2016;1-8. DOI 10.1002/9780470015902.a0026814.

24. Montenegro J.D., Golicz A.A., Bayer P.E., Hurgobin B., Lee H., Chan C.K., Visendi P., Lai K., Doležel J., Batley J., Edwards D. The pangenome of hexaploid bread wheat. Plant J. 2017;90(5): 1007-1013. DOI 10.1111/tpj.13515.

25. Plissonneau C., Hartmann F.E., Croll D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 2018;16(1):5. DOI 10.1186/s12915-017-0457-4.

26. Purugganan M.D. Evolutionary insights into the nature of plant domestication. Curr. Biol. 2019;29(14):R705-R714. DOI 10.1016/j.cub.2019.05.053.

27. Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Minx P. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326(5956):1112-1115. DOI 10.1126/science.1178534.

28. Snipen L., Almøy T., Ussery D.W. Microbial comparative pan-genomics using binomial mixture models. BMC Genomics. 2009;10(1): 385. DOI 10.1186/1471-2164-10-385.

29. Springer N.M., Ying K., Fu Y., Ji T., Yeh C.T., Jia Y., Wu W., Richmond T., Kitzman J., Rosenbaum H., Iniguez A.L., Barbazuk W.B., Jeddeloh J.A., Nettleton D., Schnable P.S. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet. 2009;5(11):e1000734. DOI d10.1371/journal.pgen.1000734.

30. Sun C., Hu Z., Zheng T., Lu K., Zhao Y., Wang W., Shi J., Wang C., Lu J., Zhang D., Li Z., Wei C. RPAN: rice pan-genome browser for ~3000 rice genomes. Nucleic Acids Res. 2016;45(2):597-605. DOI 10.1093/nar/gkw958.

31. Tahir Ul Qamar M., Zhu X., Xing F., Chen L.L. ppsPCP: a plant presence/absence variants scanner and pan-genome construction pipeline. Bioinformatics. 2019;35(20):4156-4158. DOI 10.1093/bioinformatics/btz168.

32. Tao Y., Zhao X., Mace E., Henry R., Jordan D. Exploring and exploiting pan-genomics for crop improvement. Mol. Plant. 2019;12(2): 156-169. DOI 10.1016/j.molp.2018.12.016.

33. Tets V.V. Pangenome. Citoligiya = Cytology. 2003;45(5):526-531. (in Russian)

34. Tettelin H., Masignani V., Cieslewicz M.J., Donati C., Medini D., Ward N.L., Angiuoli S.V., Crabtree J., Jones A.L., Durkin A.S., DeBoy R.T. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA. 2005;102(39):13950-13955. DOI 10.1073/pnas.0506758102.

35. Tranchant-Dubreuil C., Rouard M., Sabot F. Plant pangenome: impacts on phenotypes and evolution. Ann. Plant Rev. Online. 2018;453-478. DOI 10.1002/9781119312994.apr0664.

36. Veras A., Araujo F., Pinheiro K., Guimarães L., Azevedo V., Soares S., Costa da Silva A., Ramos R. Pan4Draft: a computational tool to improve the accuracy of pan-genomic analysis using draft genomes. Sci. Rep. 2018;8(1):1-8. DOI 10.1038/s41598-018-27800-8.

37. Wang W., Mauleon R., Hu Z., Chebotarov D., Tai S., Wu Z., Li M., Zheng T., Fuentes R.R., Zhang F., Mansueto L. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature. 2018; 557(7703):43. DOI 10.1038/s41586-018-0063-9.

38. Wendel J.F., Jackson S.A., Meyers B.C., Wing R.A. Evolution of plant genome architecture. Genome Biol. 2016;17:37. DOI 10.1186/s13059-016-0908-1.

39. Wing R.A., Purugganan M.D., Zhang Q. The rice genome revolution: from an ancient grain to Green Super Rice. Nat. Rev. Genet. 2018;19:505-517. DOI 10.1038/s41576-018-0024-z.

40. Xie Y., Wu G., Tang J., Luo R., Patterson J., Liu S., Zhou X., Lam T., Li Y., Xu X., Wong G.K., Wang J. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics. 2014;30(12):1660-1666. DOI 10.1093/bioinformatics/btu077.

41. Yao W., Li G., Zhao H., Wang G., Lian X., Xie W. Exploring the rice dispensable genome using a metagenome-like assembly strategy. Genome Biol. 2015;16:187. DOI 10.1186/s13059-015-0757-3.

42. Zerbino D.R., Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821-829. DOI 10.1101/gr.074492.107.

43. Zhao M., Wang Q., Wang Q., Jia P., Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinformatics. 2013;14(1). DOI 10.1186/1471-2105-14-S11-S1.

44. Zhao Q., Feng Q., Lu H., Li Y., Wang A., Tian Q., Zhan Q., Lu Y., Zhang L., Huang T., Wang Y. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 2018;50(2):278-284. DOI 10.1038/s41588-018-0041-z.

45. Zhao Y., Sun C., Zhao D., Zhang Y., You Y., Jia X., Yang J., Wang L., Wang J., Fu H., Kang Y., Chen F., Yu J., Wu J., Xiao J. PGAP-X: extension on pan-genome analysis pipeline. BMC Genomics. 2018; 19(1):115-124. DOI 10.1186/s12864-017-4337-7.

46. Zhao Y., Wu J., Yang J., Sun S., Xiao J., Yu J. PGAP: pan-genomes analysis pipeline. Bioinformatics. 2012;28(3):416-418. DOI 10.1093/bioinformatics/btr655.

47. Zhou L., Zhang T., Tang S., Fu X., Yu Sh. Pan-genome analysis of Paenibacillus polymyxa strains reveals the mechanism of plant growth promotion and biocontrol. Antonie van Leeuwenhoek. 2020;113: 1539-1558. DOI 10.1007/s10482-020-01461-y.

48. Zimin A.V., Marçais G., Puiu D., Roberts M., Salzberg S.L., Yorke J.A. The MaSuRCA genome assembler. Bioinformatics. 2013; 29(21): 2669-2677. DOI 10.1093/bioinformatics/btt476.

49. Żmieńko A., Samelak A., Kozłowski P., Figlerowicz M. Copy number polymorphism in plant genomes. Theor. Appl. Genet. 2014;127: 1-18. DOI 10.1007/s00122-013-2177-7.


Просмотров: 74


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)