Determination of the quantitative content of chlorophylls in leaves by reflection spectra using the random forest algorithm
https://doi.org/10.18699/VJ21.008
Abstract
About the Authors
E. A. UrbanovichRussian Federation
Novosibirsk
D. A. Afonnikov
Russian Federation
Novosibirsk
S. V. Nikolaev
Russian Federation
Novosibirsk
Moscow
References
1. Alt V.V., Gurova T.A., Elkin O.V., Klimenko D.N., Maximov L.V., Pestunov I.A., Dubrovskaya O.A., Genaev M.A., Erst T.V., Genaev K.A., Komyshev E.G., Khlestkin V.K., Afonnikov D.A. The use of Specim IQ, a hyperspectral camera, for plant analysis. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(3):259-266. DOI 10.18699/VJ19.587. (in Russian)
2. Breiman L. Bagging predictors. Mach. Learn. 1996;24:123-140. DOI 10.1023/A:1018054314350.
3. Breiman L. Random forests. Mach. Learn. 2001;45(1):5-32. DOI 10.1023/A:1010933404324.
4. Croft H., Chen J. Leaf pigment content. In: Liang S. (Ed.). Comprehensive Remote Sensing. Oxford, UK: Elsevier, 2018;117-142. DOI 10.1016/B978-0-12-409548-9.10547-0.
5. Curran P.J., Dungan J.L., Gholz H.L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1990;7:33-48. DOI 10.1093/treephys/7.1-2-3-4.33.
6. Doktor D., Lausch A., Spengler D., Thurner M. Extraction of plant physiological status from hyperspectral signatures using machine learning methods. Remote Sens. 2014;6(12):12247-12274. DOI 10.3390/rs61212247.
7. Du H., Fuh R.-C. A., Li J., Corkan L.A., Lindsey J.S. PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochem. Photobiol. 1998;68:141-142. DOI 10.1111/j.1751-1097.1998.tb02480.x.
8. Feng X., Zhan Y., Wang Q., Yang X., Yu C., Wang H., He Y. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping. Plant J. 2020; 101(6):1448-1461. DOI 10.1111/tpj.14597.
9. Féret J.-B., François C., Asner G.P., Gitelson A.A., Martin R.E., Bidel L.P.R., Ustin S.L., le Maire G., Jacquemoud S. PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008;112:3030-3043. DOI 10.1016/j.rse.2008.02.012.
10. Gitelson A.A., Gritz Y., Merzlyak M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for nondestructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003;160(3):271-282. DOI 10.1078/0176-1617-00887.
11. Gitelson A.A., Merzlyak M.N., Chivkunova O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001;74(1):38-45. DOI 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2.
12. Golhani K., Balasundram S.K., Vadamalai G., Pradhan B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018;5:354-371. DOI 10.1016/j.inpa.2018.05.002.
13. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: SpringerVerlag, 2009. DOI 10.1007/978-0-387-84858-7.
14. Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998;20(8):832-844. DOI 10.1109/34.709601.
15. Horler D.N.H., Dockray M., Barber J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983;4:273-288. DOI 10.1080/01431168308948546.
16. Jacquemound S., Bidel L., Francois C., Pavan G. ANGERS Leaf Optical Properties Database. 2003. Data set. Available online [ecosis.org] from the Ecological Spectral Information System (EcoSIS), 2003.
17. Keskitalo J., Bergquist G., Gardeström P., Jansson S. A cellular timetable of autumn senescence. Plant Physiol. 2005;139:1635-1648. DOI 10.1104/pp.105.066845.
18. Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987;148:350-382. DOI 10.1016/0076-6879(87)48036-1.
19. Louppe G., Wehenkel L., Sutera A., Geurts P. Understanding variable importances in forests of randomized trees. Adv. Neural Inf. Process. Syst. 2013;26:431-439.
20. Merzlyak M.N., Gitelson A.A., Chivkunova O.B., Solovchenko A.E., Pogosyan S.I. Application of reflectance spectroscopy for analysis of higher plant pigments. Rus. J. Plant Physiol. 2003;50(5):704-710. DOI 10.1023/A:1025608728405.
21. Młodzińska E. Survey of plant pigments: molecular and environmental determinants of plant colors. Acta Biol. Crac. Ser. Bot. 2009;51(1): 7-16.
22. Nikolaev S.V., Urbanovich E.A., Shayapov V.R., Orlova E.A., Afonnikov D.A. A method of evaluating the absorption spectrum of wheat leaf by the spectrum of diffuse reflection. Sibirskii Vestnik Sel’skokhozyaistvennoi Nauki = Siberian Herald of Agricultural Science. 2018;48(5):68-76. DOI 10.26898/0370-8799-2018-5-9. (in Russian)
23. Porra R.J., Thompson W.A., Kriedemann P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. BBA – Bioenergetics. 1989;975:384-394. DOI 10.1016/S0005-2728(89)80347-0.
24. Suo X.-M., Jang Y.-T., Yang M., Li S.-K., Wang K.-R., Wang C.-T. Artificial neural network to predict leaf population chlorophyll content from cotton plant images. Agric. Sci. China. 2010;9(1):38-45.
25. Wellburn A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994;144:307-313. DOI 10.1016/S0176-1617(11)81192-2.