Automatic morphology phenotyping of tetra- and hexaploid wheat spike using computer vision methods
https://doi.org/10.18699/VJ21.009
Abstract
Intraspecific classification of cultivated plants is necessary for the conservation of biological diversity, study of their origin and their phylogeny. The modern cultivated wheat species originated from three wild diploid ancestors as a result of several rounds of genome doubling and are represented by di-, tetra- and hexaploid species. The identification of wheat ploidy level is one of the main stages of their taxonomy. Such classification is possible based on visual analysis of the wheat spike traits. The aim of this study is to investigate the morphological characteristics of spikes for hexa- and tetraploid wheat species based on the method of high-performance phenotyping. Phenotyping of the quantitative characteristics of the spike of 17 wheat species (595 plants, 3348 images), including eight tetraploids (Triticum aethiopicum, T. dicoccoides, T. dicoccum, T. durum, T. militinae, T. polonicum, T. timopheevii, and T. turgidum) and nine hexaploids (T. compactum, T. aestivum, i:ANK-23 (near-isogenic line of T. aestivum cv. Novosibirskaya 67), T. antiquorum, T. spelta (including cv. Rother Sommer Kolben), T. petropavlovskyi, T. yunnanense, T. macha, T. sphaerococcum, and T. vavilovii), was performed. Wheat spike morphology was described on the basis of nine quantitative traits including shape, size and awns area of the spike. The traits were obtained as a result of image analysis using the WERecognizer program. A cluster analysis of plants according to the characteristics of the spike shape and comparison of their distributions in tetraploid and hexaploid species showed a higher variability of traits in hexaploid species compared to tetraploid ones. At the same time, the species themselves form two clusters in the visual characteristics of the spike. One type is predominantly hexaploid species (with the exception of one tetraploid, T. dicoccoides). The other group includes tetraploid ones (with the exception of three hexaploid ones, T. compactum, T. antiquorum, T. sphaerococcum, and i:ANK-23). Thus, it has been shown that the morphological characteristics of spikes for hexaploid and tetraploid wheat species, obtained on the basis of computer analysis of images, include differences, which are further used to develop methods for plant classifications by ploidy level and their species in an automatic mode.
Keywords
About the Authors
A. Yu. PronozinRussian Federation
Novosibirsk
A. A. Paulish
Russian Federation
Novosibirsk
E. A. Zavarzin
Russian Federation
Novosibirsk
A. Yu. Prikhodko
Russian Federation
Novosibirsk
N. M. Prokhoshin
Russian Federation
Novosibirsk
Yu. V. Kruchinina
Russian Federation
Novosibirsk
N. P. Goncharov
Russian Federation
Novosibirsk
E. G. Komyshev
Russian Federation
Novosibirsk
M. A. Genaev
Russian Federation
Novosibirsk
References
1. Afonnikov D.A., Genaev M.A., Doroshkov A.V., Komyshev E.G., Pshenichnikova T.A. Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments. Russ. J. Genet. 2016;52(7):688-701. DOI 10.1134/S1022795416070024.
2. Boguslavsky R.L. A new botanical form of hexaploid wheat. NauchnoTekhnicheskiy Byulleten VIR = Scientific and Technological Bulletin of the Vavilov Institute of Plant Industry. 1982;119:73-74. (in Russian)
3. Chen Z.J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu. Rev. Plant Biol. 2007;58:377-406. DOI 10.1146/annurev.arplant.58.032806.103835.
4. Comai L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 2005;6(11):836-846. DOI 10.1038/nrg1711.
5. Demidchik V.V., Shashko A.Y., Bandarenka V.Y., Smolikova G.N., Przhevalskaya D.A., Charnysh M.A., Pozhvanov G.A., Barkovskyi A.V., Smolich I.I., Sokolik A.I., Yu M., Medvedev S.S., Plant phenomics: fundamental bases, software and hardware platforms, and machine learning. Russ. J. Plant Physiol. 2020;67:397-412. DOI 10.1134/S1021443720030061.
6. Dorofeev V.F. Intraspecific taxonomy of wheat. Doklady VASKhNIL = Reports of the Academy of Agricultural Sciences. 1985;9:1-4. (in Russian)
7. Dorofeev V.F., Filatenko A.A., Migushova E.F., Udachin R.A., Yakubtsiner M.M. Flora of Cultivated Plants of USSR. Vol. 1. Wheat. Leningrad: Kolos Publ., 1979. (in Russian)
8. Dorofeev V.F., Rudenko M.I., Filatenko A.A., Baras J., Segnalova J., Lemann H. (Compilators). Тhе Intеrnаtiоnаl Соmесоn List оf Dеsсriрtоrs for the Gеnus Тritiсum L. Leningrad: VIR Publ., 1984. (in Russian)
9. Finigan P., Tanurdzic M., Martienssen R.A. Origins of novel phenotypic variation in polyploids. In: Polyploidy and Genome Evolution. Berlin; Heidelberg: Springer Press, 2012;57-76. DOI 10.1007/978-3-642-31442-1_4.
10. Genaev M.A., Komyshev E.G., Fu Hao, Koval V.S., Goncharov N.P., Afonnikov D.A. SpikeDroidDB: an information system for annotation of morphometric characteristics of wheat spike. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1):132-140. DOI 10.18699/VJ18.340. (in Russian)
11. Genaev M.A., Komyshev E.G., Smirnov N.V., Kruchinina Y.V., Goncharov N.P., Afonnikov D.A. Morphometry of the wheat spike by analyzing 2D images. Agronomy. 2019;9(7):390. DOI 10.3390/agronomy9070390.
12. Golovnina K.A., Kondratenko E.Ya., Blinov A.G., Goncharov N.P. Phylogeny of the A genome of wild and cultivated wheat species. Russ. J. Genet. 2009;45(11):1360-1367. DOI 10.1134/S1022795409110106.
13. Goncharov N.P. Comparative-genetic analysis – a base for wheat taxonomy revision. Czech J. Genet. Plant Breed. 2005;41:52-55.
14. Goncharov N.P. Manual Book of Common and Hard Wheat Varieties. Novosibirsk: SO RAN Publ., 2009. (in Russian)
15. Goncharov N.P. Genus Triticum L. taxonomy: the present and the future. Plant Syst. Evol. 2011;295(1-4):1-11. DOI 10.1007/s00606-011-0480-9.
16. Goncharov N.P., Kondratenko E.Ya. Wheat origin, domestication and evolution. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2008;12(1/2):159-179. (in Russian)
17. Goncharov N.P., Shumny V.K. From preservation of genetic collections to organization of National project of plant gene pools conservation in permafrost. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2008;12(4):509-523. (in Russian)
18. Hammer K., Filatenko A.A., Pistrick K. Taxonomic remarks on Triticum L. and ×Triticosecale Wittm. Genet. Resour. Crop Evol. 2011; 58(1):3-10. DOI 10.1007/s10722-010-9590-4.
19. Johnson S.C. Hierarchical clustering schemes. Psychometrika. 1967; 32(3):241-254.
20. Koval S.F. The catalog of near-isogenic lines of Novosibirskaya-67 common wheat and principles of their use in experiments. Russ. J. Genet. 1997;33(8):995-1000.
21. Liu W., Zheng Y., Song S., Huo B., Li D., Wang J. In vitro induction of allohexaploid and resulting phenotypic variation in Populus. Plant Cell Tiss. Organ Cult. 2018;134(2):183-192. DOI 10.1007/s11240018-1411-z.
22. Müllner D. Modern hierarchical, agglomerative clustering algorithms. arXiv. 2011;1109.2378.
23. Palmova E.F. Introduction to Wheat Ecology. Moscow; Leningrad: Selkhozgiz Publ., 1935. (in Russian)
24. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Müller A., Nothman J., Louppe G., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011;12:2825-2830.
25. Robinson D.O., Coate J.E., Singh A., Hong L., Bush M., Doyle J.J., Roeder A.H. Ploidy and size at multiple scales in the Arabidopsis sepal. Plant Cell. 2018;30(10):2308-2329. DOI 10.1105/tpc.18.00344.
26. Rodionov A.V., Amosova A.V., Belyakov E.A., Zhurbenko P.M., Mikhailova Y.V., Punina E.O., Shneyer V.S., Loskutov I.G., Muravenko O.V. Genetic consequences of interspecific hybridization, its role in speciation and phenotypic diversity of plants. Russ. J. Genet. 2019;55(3):278-294. DOI 10.1134/S1022795419030141.
27. Rodionov A.V., Shneyer V.S., Gnutikov A.A., Nosov N.N., Punina E.O., Zhurbenko P.M., Loskutov I.G., Muravenko O.V. Species dialectics: from initial uniformity, through the greatest possible diversity to ultimate uniformity. Botanicheskiy Zhurnal = Botanical Journal. 2020; 105(9):835-853. DOI 10.31857/S0006813620070091. (in Russian)
28. Romanov B.V., Pimonov K.I. Phenomogenomics of Production Traits of Wheat Species. Persianovsky: Donskoy GAU Publ., 2018. (in Russian)
29. Sinskaya E.N. Historical Geography of Cultural Flora (At the Dawn of Agriculture). Leningrad: Kolos Publ., 1969. (in Russian)
30. Snedecor G.W., Cochran W.G. Statistical Methods. Ames, Iowa: Iowa State University Press, 1989.
31. Tan F., Tu H., Liang W., Long J.M., Wu X.M., Zhang H.Y., Guo W.W. Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biol. 2015;15:89. DOI 10.1186/s12870-015-0450-4.
32. Udachin R.A., Migushova E.F. New in the knowledge of the genus Triticum. Vestnik Selskokhozyaystvennoy Nauki = Herald of Agricultural Sciences. 1970;9:20-24. (in Russian)
33. van der Maaten L., Hinton G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008;9:2579-2605.
34. van Slageren M., Payne T. Concepts and nomenclature of the Farro wheats, with special reference to Emmer, Triticum turgidum subsp. dicoccum (Poaceae). Kew Bull. 2013;68:477-494. DOI 10.1007/S12225-013-9459-8.
35. Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S.J., Brett M., Jones E., Kern R., Larson E., Carey C.J., Polat I., Feng Yu, Moore E.W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E.A., Harris C.R., Archibald A.M., Riberio A.H., Pedregosa F., van Mulbregt P. SciPy 1.0 Contributors. SciPy 1.0 – fundamental algorithms for scientific computing in Python. Nat. Meth. 2020;17(3):261-272. DOI 10.1038/s41592-019-0686-2.
36. Watanabe N., Bannikova S.V., Goncharov N.P. Inheritance and chromosomal location of the genes for long glume phenotype found in Portuguese landraces of hexaploid wheat, ‘Arrancada’. J. Genet. Breed. 2004;58:273-278.
37. Williams J.H., Oliveira P.E. For things to stay the same, things must change: polyploidy and pollen tube growth rates. Ann. Bot. 2020; 125(6):925-935. DOI 10.1093/aob/mcaa007.
38. Yakubtsiner M.M. More on Chinese wheats. Botanicheskiy Zhurnal = Botanical Journal. 1959;44(10):1425-1436. (in Russian)
39. Yang W., Feng H., Zhang X., Zhang J., Doonan J.H., Batchelor W.D., Xiong L., Yan J. Crop phenomics and high-throughput phenotyping: past decades, current challenges, and future perspectives. Mol. Plant. 2020;13(2):187-214. DOI 10.1016/j.molp.2020.01.008.
40. Zatybekov A., Anuarbek S., Abugalieva S., Turuspekov Y. Phenotypic and genetic variability of a tetraploid wheat collection grown in Kazakhstan. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(6):605-612. DOI 10.18699/VJ20.654.
41. Zhang Y., Zhao C., Du J., Guo X., Wen W., Gu S., Wang J., Fan J. Crop phenomics: current status and perspectives. Front. Plant Sci. 2019; 10:714. DOI 10.3389/fpls.2019.00714.
42. Zuev E.V., Amri A., Brykova A.N., Pyukkenen V.P., Mitrofanova O.P. Atlas of the Diversity of Soft Wheat (Triticum aestivum L.) by Ear and Grain Characteristics. St. Petersburg: Kopi-R Publ., 2019. (in Russian)