Анализ чувствительности и идентифицируемости математических моделей распространения эпидемии COVID-19
https://doi.org/10.18699/VJ21.010
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Об авторах
О. И. КриворотькоРоссия
Новосибирск
С. И. Кабанихин
Россия
Новосибирск
М. И. Сосновская
Россия
Новосибирск
Д. В. Андорная
Россия
Новосибирск
Список литературы
1. Adams B.M., Banks H.T., Davidiana M., Kwona H.D., Trana H.T., Wynnea S.N., Rosenbergb E.S. HIV dynamics: modeling, data analysis, and optimal treatment protocols. J. Comput. Appl. Math. 2004; 184:10-49. https://doi.org/10.1016/j.cam.2005.02.004.
2. Bellu G., Saccomani M.P., Audoly S., D’Angiò L. DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput. Methods Programs Biomed. 2007;88(1):52-61. https://doi.org/10.1016/j.cmpb.2007.07.002.
3. Gomez J., Prieto J., Leon E., Rodriguez A. INFEKTA: a general agent-based model for transmission of infectious diseases: studying the COVID-19 propagation in Bogotá - Colombia. MedRxiv. 2020. https://doi.org/10.1101/2020.04.06.20056119.
4. Habtemariam T., Tameru B., Nganwa D., Beyene G., Ayanwale L., Robnett V. Epidemiologic modeling of HIV/AIDS: use of computational models to study the population dynamics of the disease to assess effective intervention strategies for decision-making. Adv. Syst. Sci. Appl. 2008;8(1):35-39.
5. Kabanikhin S.I. Definitions and examples of inverse and ill-posed problems. J. Inverse Ill-Posed Probl. 2008;16(4):317-357. https://doi.org/10.1515/JIIP.2008.019.
6. Kabanikhin S.I., Voronov D.A., Grodz A.A., Krivorotko O.I. Identifiability of mathematical models in medical biology. Russ. J. Genet. Appl. Res. 2016;6(8):838-844. https://doi.org/10.1134/S2079059716070054.
7. Kermack W.O., McKendrick A.G. A contribution of the mathematical theory of epidemics. Proc. R. Soc. Lond. A. 1927;115:700-721. https://doi.org/10.1098/rspa.1927.0118.
8. Kerr C., Stuart R., Mistry D., Abeysuriya R., Hart G., Rosenfeld K., Selvaraj P., Nunez R., Hagedorn B., George L., Izzo A., Palmer A., Delport D., Bennette C., Wagner B., Chang S., Cohen J., Panovska-Griffiths J., Jastrzebski M., Oron A., Wenger E., Famulare M., Klein D. Covasim: an agent-based model of COVID-19 dynamics and interventions. MedRxiv. 2020. https://doi.org/10.1101/2020.05.10.20097469.
9. Krivorotko O.I., Andornaya D.V., Kabanikhin S.I. Sensitivity analysis and practical identifiability of some mathematical models in biology. J. Appl. Ind. Math. 2020a;14:115-130. https://doi.org/10.1134/S1990478920010123.
10. Krivorotko O.I., Kabanikhin S.I., Zyat’kov N.Yu., Prikhod’ko A.Yu., Prokhoshin N.M., Shishlenin M.A. Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region. Numer. Analysis Applications. 2020b;13(4):332-348. https://doi.org/10.1134/S1995423920040047.
11. Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H., Azman A.S., Reich N.G., Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020;172:577-582. https://doi.org/10.7326/m20-0504.
12. Lee W., Liu S., Tembine H., Li W., Osher S. Controlling propagation of epidemics via mean-field games. ArXiv. 2020;arXiv:2006.01249.
13. Likhoshvai V.A., Fadeev S.I., Demidenko G.V., Matushkin Yu.G. Modeling nonbranching multistage synthesis by an equation with retarded argument. Sibirskiy Zhurnal Industrialnoy Matematiki = Journal of Applied and Industrial Mathematics. 2004;7(1):73-94. (in Russian)
14. Miao H., Xia X., Perelson A.S., Wu H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev. 2011;53(1):3-39. https://doi.org/10.1137/090757009.
15. Raue A., Becker V., Klingmüller U., Timmer J. Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos. 2010;20(4):045105. https://doi.org/10.1063/1.3528102.
16. Raue A., Karlsson J., Saccomani M.P., Jirstrand M., Timmer J. Comparison of approaches for parameter identifiability analysis of biological systems. Bioinformatics. 2014;30(10):1440-1448. https://doi.org/10.1093/bioinformatics/btu006.
17. Tuomisto J.T., Yrjölä J., Kolehmainen M., Bonsdorff J., Pekkanen J., Tikkanen T. An agent-based epidemic model REINA for COVID-19 to identify destructive policies. MedRxiv. 2020. https://doi.org/10.1101/2020.04.09.20047498.
18. Unlu E., Leger H., Motornyi O., Rukubayihunga A., Ishacian T., Chouiten M. Epidemic analysis of COVID-19 outbreak and counter-measures in France. MedRxiv. 2020. https://doi.org/10.1101/2020.04.27.20079962.
19. Verity R., Okell L., Dorigatti I., Winskill P., Whittaker C., Imai N., Cuomo-Dannenburg G., Thompson H., Walker P., Fu H., Dighe A., Griffin J., Baguelin M., Bhatia S., Boonyasiri S., Cori A., Cucunubá Z., FitzJohn R., Gaythorpe K., Green W., Hamlet A., Hinsley W., Laydon D., Nedjati-Gilani G., Riley S., Elsland S., Volz E., Wang H., Wang Y., Xi X., Donnelly C., Ghani A., Ferguson N.M. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 2020;20(6):669-677. https://doi.org/10.1016/S1473-3099(20)30243-7.
20. Voropaeva O.F., Tsgoev Ch.A. A numerical model of inflammation dynamics in the core of myocardial infarction. J. Appl. Ind. Math. 2019;13(2):372-383. https://doi.org/10.1134/S1990478919020182.
21. Wolfram C. An agent-based model of COVID-19. Complex Syst. 2020; 29(1):87-105. https://doi.org/10.25088/ComplexSystems.29.1.87.
22. Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., Niemeyer D., Jones T.C., Vollmar P.V., Rothe C., Hoelscher M., Bleicker T., Brünink S., Schneider J., Ehmann R., Zwirglmaier K., Drosten C., Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465-469. https://doi.org/10.1038/s41586-020-2196-x.
23. Yao K.Z., Shaw B.M., Kou B., McAuley K.B., Bacon D.W. Modeling ethylene/butene copoly-merization with multi-site catalysts: parameter estimability and experimental design. Polymer Reaction Engineer. 2003;11(3):563-588. https://doi.org/10.1081/PRE-120024426.