Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Sensitivity and identifiability analysis of COVID-19 pandemic models

https://doi.org/10.18699/VJ21.010

Abstract

The paper presents the results of sensitivity-based identif iability analysis of the COVID-19 pandemic spread models in the Novosibirsk region using the systems of differential equations and mass balance law. The algorithm is built on the sensitivity matrix analysis using the methods of differential and linear algebra. It allows one to determine the parameters that are the least and most sensitive to data changes to build a regularization for solving an identif ication problem of the most accurate pandemic spread scenarios in the region. The performed analysis has demonstrated that the virus contagiousness is identif iable from the number of daily conf irmed, critical and recovery cases. On the other hand, the predicted proportion of the admitted patients who require a ventilator and the mortality rate are determined much less consistently. It has been shown that building a more realistic forecast requires adding additional information about the process such as the number of daily hospital admissions. In our study, the problems of parameter identif ication using additional information about the number of daily conf irmed, critical and mortality cases in the region were reduced to minimizing the corresponding misf it functions. The minimization problem was solved through the differential evolution method that is widely applied for stochastic global optimization. It has been demonstrated that a more general COVID-19 spread compartmental model consisting of seven ordinary differential equations describes the main trend of the spread and is sensitive to the peaks of conf irmed cases but does not qualitatively describe small statistical datasets such as the number of daily critical cases or mortality that can lead to errors in forecasting. A more detailed agent-oriented model has been able to capture statistical data with additional noise to build scenarios of COVID-19 spread in the region.

About the Authors

O. I. Krivorotko
Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


S. I. Kabanikhin
Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


M. I. Sosnovskaya
Novosibirsk State University
Russian Federation
Novosibirsk


D. V. Andornaya
Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Adams B.M., Banks H.T., Davidiana M., Kwona H.D., Trana H.T., Wynnea S.N., Rosenbergb E.S. HIV dynamics: modeling, data analysis, and optimal treatment protocols. J. Comput. Appl. Math. 2004; 184:10-49. DOI 10.1016/j.cam.2005.02.004.

2. Bellu G., Saccomani M.P., Audoly S., D’Angiò L. DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput. Methods Programs Biomed. 2007;88(1):52-61. DOI 10.1016/j.cmpb.2007.07.002.

3. Gomez J., Prieto J., Leon E., Rodriguez A. INFEKTA: a general agent-based model for transmission of infectious diseases: studying the COVID-19 propagation in Bogotá – Colombia. MedRxiv. 2020. DOI 10.1101/2020.04.06.20056119.

4. Habtemariam T., Tameru B., Nganwa D., Beyene G., Ayanwale L., Robnett V. Epidemiologic modeling of HIV/AIDS: use of computational models to study the population dynamics of the disease to assess effective intervention strategies for decision-making. Adv. Syst. Sci. Appl. 2008;8(1):35-39.

5. Kabanikhin S.I. Definitions and examples of inverse and ill-posed problems. J. Inverse Ill-Posed Probl. 2008;16(4):317-357. DOI 10.1515/JIIP.2008.019.

6. Kabanikhin S.I., Voronov D.A., Grodz A.A., Krivorotko O.I. Identifiability of mathematical models in medical biology. Russ. J. Genet. Appl. Res. 2016;6(8):838-844. DOI 10.1134/S2079059716070054.

7. Kermack W.O., McKendrick A.G. A contribution of the mathematical theory of epidemics. Proc. R. Soc. Lond. A. 1927;115:700-721. DOI 10.1098/rspa.1927.0118.

8. Kerr C., Stuart R., Mistry D., Abeysuriya R., Hart G., Rosenfeld K., Selvaraj P., Nunez R., Hagedorn B., George L., Izzo A., Palmer A., Delport D., Bennette C., Wagner B., Chang S., Cohen J., Panovska-Griffiths J., Jastrzebski M., Oron A., Wenger E., Famulare M., Klein D. Covasim: an agent-based model of COVID-19 dynamics and interventions. MedRxiv. 2020. DOI 10.1101/2020.05.10.20097469.

9. Krivorotko O.I., Andornaya D.V., Kabanikhin S.I. Sensitivity analysis and practical identifiability of some mathematical models in biology. J. Appl. Ind. Math. 2020a;14:115-130. DOI 10.1134/S1990478920010123.

10. Krivorotko O.I., Kabanikhin S.I., Zyat’kov N.Yu., Prikhod’ko A.Yu., Prokhoshin N.M., Shishlenin M.A. Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region. Numer. Analysis Applications. 2020b;13(4):332-348. DOI 10.1134/S1995423920040047.

11. Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H., Azman A.S., Reich N.G., Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020;172:577-582. DOI 10.7326/m20-0504.

12. Lee W., Liu S., Tembine H., Li W., Osher S. Controlling propagation of epidemics via mean-field games. ArXiv. 2020;arXiv:2006.01249.

13. Likhoshvai V.A., Fadeev S.I., Demidenko G.V., Matushkin Yu.G. Modeling nonbranching multistage synthesis by an equation with retarded argument. Sibirskiy Zhurnal Industrialnoy Matematiki = Journal of Applied and Industrial Mathematics. 2004;7(1):73-94. (in Russian)

14. Miao H., Xia X., Perelson A.S., Wu H. On identifiability of nonlinear ODE models and applications in viral dynamics. SIAM Rev. 2011;53(1):3-39. DOI 10.1137/090757009.

15. Raue A., Becker V., Klingmüller U., Timmer J. Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos. 2010;20(4):045105. DOI 10.1063/1.3528102.

16. Raue A., Karlsson J., Saccomani M.P., Jirstrand M., Timmer J. Comparison of approaches for parameter identifiability analysis of biological systems. Bioinformatics. 2014;30(10):1440-1448. DOI 10.1093/bioinformatics/btu006.

17. Tuomisto J.T., Yrjölä J., Kolehmainen M., Bonsdorff J., Pekkanen J., Tikkanen T. An agent-based epidemic model REINA for COVID-19 to identify destructive policies. MedRxiv. 2020. DOI 10.1101/2020.04.09.20047498.

18. Unlu E., Leger H., Motornyi O., Rukubayihunga A., Ishacian T., Chouiten M. Epidemic analysis of COVID-19 outbreak and counter-measures in France. MedRxiv. 2020. DOI 10.1101/2020.04.27.20079962.

19. Verity R., Okell L., Dorigatti I., Winskill P., Whittaker C., Imai N., Cuomo-Dannenburg G., Thompson H., Walker P., Fu H., Dighe A., Griffin J., Baguelin M., Bhatia S., Boonyasiri S., Cori A., Cucunubá Z., FitzJohn R., Gaythorpe K., Green W., Hamlet A., Hinsley W., Laydon D., Nedjati-Gilani G., Riley S., Elsland S., Volz E., Wang H., Wang Y., Xi X., Donnelly C., Ghani A., Ferguson N.M. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect. Dis. 2020;20(6):669-677. DOI 10.1016/S1473-3099(20)30243-7.

20. Voropaeva O.F., Tsgoev Ch.A. A numerical model of inflammation dynamics in the core of myocardial infarction. J. Appl. Ind. Math. 2019;13(2):372-383. DOI 10.1134/S1990478919020182.

21. Wolfram C. An agent-based model of COVID-19. Complex Syst. 2020; 29(1):87-105. DOI 10.25088/ComplexSystems.29.1.87.

22. Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., Niemeyer D., Jones T.C., Vollmar P.V., Rothe C., Hoelscher M., Bleicker T., Brünink S., Schneider J., Ehmann R., Zwirglmaier K., Drosten C., Wendtner C. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465-469. DOI 10.1038/s41586-020-2196-x.

23. Yao K.Z., Shaw B.M., Kou B., McAuley K.B., Bacon D.W. Modeling ethylene/butene copoly-merization with multi-site catalysts: parameter estimability and experimental design. Polymer Reaction Engineer. 2003;11(3):563-588. DOI 10.1081/PRE-120024426.


Review

Views: 1063


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)