EFFECT OF ALIEN GENOMIC INTROGRESSIONS ON THE OSMOTIC TOLERANCE OF WHEAT
Abstract
Drought is one of the major environmental factors that limit crop growth and yield. Development of new wheat genotypes carrying introgressions from other cereal species is widely applied to improve the complex stability of bread wheat (Triticum aestivum L.). The aim of this study was estimation of the effect of foreign genetic material (derived from Aegilops speltoides, Ae. tauschii and T. timopheevii) on osmotic stress tolerance in wheat seedlings. Indirect evaluation of drought resistance by creating artificial shortage of moisture under laboratory conditions identified different degrees of the influence of foreign genetic material. In particular, it was shown that the presence of the T6BS· 6BL-6SL translocation from the Ae. speltoides genome in bread wheat might increase its drought resistance, whereas the presence of a T. timopheevii introgression in chromosome 2A, on the contrary, reduced the resistance of wheat to osmotic stress. By the example of translocation T5BS· 5BL-5SL, it was found that the same foreign fragment introgressed into different wheat genotypes could exert different effects on resistance to osmotic stress depending on the drought tolerance degree of the initial wheat genotype.
About the Authors
R. S. YudinaRussian Federation
I. N. Leonova
Russian Federation
E. A. Salina
Russian Federation
E. K. Khlestkina
Russian Federation
References
1. Адонина И.Г., Сусолкина Н.В., Тимонова Е.М., Христов Ю.А., Салина Е.А. Создание линий мягкой пшеницы с транслокациями от Aegilops speltoides Tausch и их оценка на устойчивость к листовой ржавчине // Генетика. 2012. Т. 48. № 4. С. 488–494.
2. Бадаева Е.Д., Прокофьева З.Д., Билинская Е.Н. и др. Цитогенетический анализ устойчивых к бурой ржавчине и мучнистой росе гибридов, полученных от скрещивания мягкой пшеницы (Triticum aestivum L., AABBDD) c пшеницами группы Timopheevi (AtAtGG) // Генетика. 2000. Т. 36. С. 1663-1673.
3. Патент RU 2484621. Способ создания линий мягкой пшеницы, устойчивых к бурой ржавчине / Салина Е.А., Леонова И.Н., Петраш Н.В., Адонина И.Г., Щербань А.Б. Опубл. 20.06.2013.
4. Удовенко Г.В. Диагностика устойчивости растений к стрессовым воздействиям. Методическое руководство. Л.: ВИР, 1988. 226 с.
5. Ashraf M. Inducing drought tolerance in plants: Recent advances // Biotechnol. Adv. 2010. V. 28. P. 169–183.
6. Bálint A.F., Szira F., Börner A., Galiba G. Segregation- and association based mapping of loci infl uencing osmotic tolerance in barley // Acta Biol. Szegediensis. 2008. V. 52. P. 101–102.
7. Baloch M.J., Dunwell J., Khakwani A.A., Dennet M., Jatoi W.A., Channa S.A. Assessment of wheat cultivars for drought tolerance via osmotic stress imposed at early seedling growth stages // J. Agric. Res. 2012. V. 50. P. 299–310.
8. Bartels D., Sunkar R. Drought and salt tolerance in plants // Crit. Rev. Plant Sci. 2005. V. 24. P. 23–58.
9. Bohnert H.J., Nelson D.E., Jensen R.G. Adaptations to environmental stresses // Plant Cell. 1995. V. 7. P. 1099–1111.
10. Budak H., Kantar M., Yucebilgili Kurtoglu K. Drought tolerance in modern and wild wheat // Sci. World J. 2013. V. 2013. Article number 548246.
11. Chaves M.M., Maroco J.P., Pereira J.S. Understanding plant responses to drought – from genes to the whole plant // Funct. Plant Biol. 2003. V. 30. P. 239–264.
12. Farshadfar E., Mohammadi R., Farshadfar M., Dabiri S. Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines // Aust. J. Crop Sci. 2013. V. 7. P. 130–138.
13. Feldman M., Sears E.R. The wild gene resources of wheat // Sci. Am. 1981. 244. P. 102–112.
14. Fleury D., Jefferies S., Kuchel H., Langridge P. Genetic and genomic tools to improve drought tolerance in wheat // J. Exp. Bot. 2010. V. 61. P. 3211–3222.
15. Leonova I.N., Budashkina E.B., Kalinina N.P., Röder M.S., Börner A., Salina E.A. Triticum aestivum-Triticum
16. timopheevii introgression lines as a source of pathogen resistance genes // Czech J. Genet. Plant Breed. 2011. V. 47. P. S49–S55.
17. McFadden E.S., Sears E.R. The genome approach in radical wheat breeding // J. Am. Soc. Agron. 1947. V. 39. P. 1011–1026.
18. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat, Yokohama, Japan, 2013. 197 p.
19. Mir R.R., Zaman-Allah M., Sreenivasulu N., Trethowan R., Varshney R.K. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops // Theor. Appl. Genet. 2012. V. 125. P. 625–645.
20. Money N.P. Osmotic pressure of aqueous polyethylene glycols // Plant Physiol. 1989. V. 91. P. 766–769.
21. Ogbonnaya F.C., Abdalla O., Mujeeb-Kazi A., Kazi A.G., Xu S.S., Gosman N., Lagudah E.S., Bonnett D., Sorrells M.E., Tsujimoto H. Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement // Plant Breed. Rev. 2013. V. 37. P. 35–122.
22. Osipova S.V., Permyakov A.V., Permyakova M.D., Davydov V.A., Pshenichnikova T.A., Börner A. Tolerance of prolonged drought among a set of bread wheat chromosome substituion lines // Cereal Res. Commun. 2011. V. 39. P. 343–351.
23. Osipova S.V., Permyakov A.V., Permyakova M.D., Pshenichnikova T.A., Genaev M.A., Börner A. The antioxidant enzymes activity in leaves of inter-varietal substitution lines of wheat (Triticum aestivum L.) with different tolerance to soil water defi cit // Acta Physiol. Plant. 2013. V. 35. P. 2455–2465.
24. Salina E.A., Petrash N.V., Timonova E.M., Adonina I.G. Markers-assisted indentifi cation of a new leaf rust resistance gene from Aegilops speltoides // Abstr. оf the 12th Intern. Wheat Genet. Symp. Japan, September 8–14, 2013. P. 170.
25. Schneider A., Molnar I., Molnar-Lang M. Utilization of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat // Euphytica. 2008. V. 163. P. 1–19.
26. Simon-Sarkadi L., Galiba G. Refl ection of environmental stresses on the amino acid composition of wheat // Perjodica Polytechnica Ser. Chem. Eng. 1996. V. 40. P. 79–86.
27. Singh H., Johnson R., Seth D. Genes for race-specific resistance to yellow rust (Puccinia striiformis) in Indian wheat cultivars // Plant Pathol. 1990 V. 39. P. 424–433.
28. Timonova E.M., Leonova I.N., Röder M.S., Salina E. Markerassisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome // Mol. Breed. 2013. V. 31. P. 123–136.
29. Todorovska E., Christov N., Slavov S., Christova P., Vassilev D. Biotic stress resistance in wheat – breeding and genomic selection implications // Biotechnol. Biotech. Eq. 2009. V. 23. P. 1417–1426.
30. Wang W., Vinocur B., Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance // Planta. 2003. V. 218. P. 1–14.