Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Механический стресс клеток мозга, локальная трансляция и нейродегенеративные заболевания: молекулярно-генетические аспекты

https://doi.org/10.18699/VJ21.011

Полный текст:

Аннотация

Идея о том, что хронический механический стресс, который испытывают клетки мозга при повышенном внутричерепном давлении, артериальной гипертензии или вследствие травмы, может быть одним из факторов риска в развитии нейродегенеративных заболеваний, появилась еще в 90-е годы прошлого столетия и поддерживается в настоящее время. Однако молекулярно-генетические механизмы реализации событий, ведущих от механического воздействия на клетки к нарушению пластичности синапсов и последующему изменению поведения, когнитивных способностей и памяти, не ясны. В настоящем обзоре рассмотрены существующие данные о молекулярно-генетических механизмах регуляции локальной трансляции и актинового цитоскелета в активированном синапсе, играющих центральную роль в формировании различных видов пластичности синапса и долговременной памяти, и возможных путях влияния механического стресса на их состояние. Обсуждается роль mTOR сигнального каскада, РНК-связывающего белка FMRP, белка CYFIP1, взаимодействующего с FMRP, семейства малых ГТФаз и WAVE регуляторного комплекса в регуляции инициации локальной трансляции и перестроек актинового цитоскелета в дендритных шипиках активированного синапса. Приводятся факты, свидетельствующие о том, что в условиях хронического механического стресса возможна аберрантная активация mTOR сигнального каскада и WAVE регуляторного комплекса через сенсор механических сигналов – регуляторный фактор YAP/TAZ, следствием которой могут быть нарушения активности системы локальной трансляции, а также связанных с ними механизмов регуляции формирования F-актиновых филаментов и структуры дендритных шипиков. Это может быть одной из причин развития различных неврологических патологий, включая аутистические расстройства и эпилептическую энцефалопатию. Высказывается оригинальная гипотеза, согласно которой одной из возможных причин синаптопатий может быть нарушение стабильности протеома, связанное с гиперактивностью mTOR и формированием сложных динамических режимов синтеза белков de novo в ответ на стимуляцию синапса, в том числе и в условиях хронического механического стресса.

Об авторе

Т. М. Хлебодарова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Курчатовский геномный центр Института цитологии и генетики Сибирского отделения Российской академии наук
Россия
Новосибирск


Список литературы

1. Abekhoukh S., Bardoni B. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front. Cell. Neurosci. 2014;8:81. DOI 10.3389/fncel.2014.00081.

2. Abekhoukh S., Sahin H.B., Grossi M., Zongaro S., Maurin T., Madrigal I., Kazue-Sugioka D., Raas-Rothschild A., Doulazmi M., Carrera P., Stachon A., Scherer S., Drula Do Nascimento M.R., Trembleau A., Arroyo I., Szatmari P., Smith I.M., Milà M., Smith A.C., Giangrande A., Caillé I., Bardoni B. New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. Dis. Model. Mech. 2017;10(4):463-474. DOI 10.1242/dmm.025809.

3. Ascano M. Jr., Mukherjee N., Bandaru P., Miller J.B., Nusbaum J.D., Corcoran D.L., Langlois C., Munschauer M., Dewell S., Hafner M., Williams Z., Ohler U., Tuschl T. FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature. 2012;492: 382-386. DOI 10.1038/nature11737.

4. Ba W., van der Raadt J., Nadif Kasri N. Rho GTPase signaling at the synapse: implications for intellectual disability. Exp. Cell Res. 2013; 319(15):2368-2374. DOI 10.1016/j.yexcr.2013.05.033.

5. Bamburg J.R., Bernstein B.W. Actin dynamics and cofilin-actin rods in Alzheimer disease. Cytoskeleton (Hoboken). 2016;73(9):477-497. DOI 10.1002/cm.21282.

6. Bastos de Figueiredo J.C., Diambra L., Glass L., Malta C.P. Chaos in two-looped negative feedback systems. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 2002;65:051905.

7. Basu S., Lamprecht R. The role of actin cytoskeleton in dendritic spines in the maintenance of long-term memory. Front. Mol. Neurosci. 2018;11:143. DOI 10.3389/fnmol.2018.00143.

8. Beggs J.E., Tian S., Jones G.G., Xie J., Iadevaia V., Jenei V., Thomas G., Proud C.G. The MAP kinase-interacting kinases regulate cell migration, vimentin expression and eIF4E/CYFIP1 binding. Biochem J. 2015;467(1):63-76. DOI 10.1042/BJ20141066.

9. Ben Zablah Y., Merovitch N., Jia Z. The role of ADF/сofilin in synaptic physiology and Alzheimer’s disease. Front. Cell Dev. Biol. 2020; 8:594998. DOI 10.3389/fcell.2020.594998.

10. Borovac J., Bosch M., Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol. Cell. Neurosci. 2018;91:122-130. DOI 10.1016/j.mcn.2018.07.001.

11. Bramham C.R. Local protein synthesis, actin dynamics, and LTP consolidation. Curr. Opin. Neurobiol. 2008;18(5):524-531. DOI 10.1016/j.conb.2008.09.013.

12. Briz V., Zhu G., Wang Y., Liu Y., Avetisyan M., Bi X., Baudry M. Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J. Neurosci. 2015;35(5):2269-2282. DOI 10.1523/JNEUROSCI.2302-14.2015.

13. Brown V., Small K., Lakkis L., Feng Y., Gunter C., Wilkinson K.D., Warren S.T. Purified recombinant Fmrp exhibits selective RNA binding as an intrinsic property of the fragile X mental retardation protein. J. Biol. Chem. 1998;273(25):15521-15527. DOI 10.1074/jbc.273.25.15521.

14. Buffington S.A., Huang W., Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction. Annu. Rev. Neurosci. 2014;37:17-38. DOI 10.1146/annurev-neuro-071013-014100.

15. Cai Z., Chen G., He W., Xiao M., Yan L.J. Activation of mTOR: a culprit of Alzheimer’s disease? Neuropsychiatr. Dis. Treat. 2015;11: 1015-1030. DOI 10.2147/NDT.S75717.

16. Cajigas I.J., Will T., Schuman E.M. Protein homeostasis and synaptic plasticity. EMBO J. 2010;29:2746-2752. DOI 10.1038/emboj.2010.173.

17. Chen B., Chou H.T., Brautigam C.A., Xing W., Yang S., Henry L., Doolittle L.K., Walz T., Rosen M.K. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. Elife. 2017;6:e29795. DOI 10.7554/eLife.29795.

18. Chen E., Joseph S. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins. Biochimie. 2015; 114:147-154. DOI 10.1016/j.biochi.2015.02.005.

19. Chen E., Sharma M.R., Shi X., Agrawal R.K., Joseph S. Fragile X mental retardation protein regulates translation by binding directly to the ribosome. Mol. Cell. 2014;54:407-417. DOI 10.1016/j.molcel.2014.03.023.

20. Chen L.Y., Rex C.S., Babayan A.H., Kramár E.A., Lynch G., Gall C.M., Lauterborn J.C. Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J. Neurosci. 2010;30(33):10977-10984. DOI 10.1523/JNEUROSCI.1077-10.2010.

21. Chestkov I.V., Jestkova E.M., Ershova E.S., Golimbet V.E., Lezheiko T.V., Kolesina N.Y., Porokhovnik L.N., Lyapunova N.A., Izhevskaya V.L., Kutsev S.I., Veiko N., Kostyuk S.V. Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr. Res. 2018;197:305-314. DOI 10.1016/j.schres.2018.01.001.

22. Cory G.O.C., Ridley A.J. Cell motility: braking WAVEs. Nature. 2002; 418:732-733. DOI 10.1038/418732a.

23. Costa-Mattioli M., Sossin W.S., Klann E., Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron. 2009;61:10-26. DOI 10.1016/j.neuron.2008.10.055.

24. Darnell J.C., Klann E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat. Neurosci. 2013;16(11): 1530-1536. DOI 10.1038/nn.3379.

25. Darnell J.C., Van Driesche S.J., Zhang C., Hung K.Y., Mele A., Fraser C.E., Stone E.F., Chen C., Fak J.J., Chi S.W., Licatalosi D.D., Richter J.D., Darnell R.B. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146: 247-261. DOI 10.1016/j.cell.2011.06.013.

26. Dasgupta I., McCollum D. Control of cellular responses to mechanical cues through YAP/TAZ regulation. J. Biol. Chem. 2019;294(46): 17693-17706. DOI 10.1074/jbc.REV119.007963.

27. De Rubeis S., Pasciuto E., Li K.W., Fernández E., Di Marino D., Buzzi A., Ostroff L.E., Klann E., Zwartkruis F.J., Komiyama N.H., Grant S.G., Poujol C., Choquet D., Achsel T., Posthuma D., Smit A.B., Bagni C. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron. 2013;79(6):1169-1182. DOI 10.1016/j.neuron.2013.06.039.

28. de Sena Cortabitarte A., Degenhardt F., Strohmaier J., Lang M., Weiss B., Roeth R., Giegling I., Heilmann-Heimbach S., Hofmann A., Rujescu D., Fischer C., Rietschel M., Nöthen M.M., Rappold G.A., Berkel S. Investigation of SHANK3 in schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2017;174(4):390-398. DOI 10.1002/ajmg.b.32528.

29. Decroly O., Goldbeter A. Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. USA. 1982;79:6917-6921. DOI 10.1073/pnas.79.22.6917.

30. Derivery E., Lombard B., Loew D., Gautreau A. The Wave complex is intrinsically inactive. Cell Motil. Cytoskeleton. 2009;66(10):777-790. DOI 10.1002/cm.20342.

31. Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., Cordenonsi M., Zanconato F., Le Digabel J., Forcato M., Bicciato S., Elvassore N., Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474(7350):179-183. DOI 10.1038/nature10137.

32. Feng Y., Absher D., Eberhart D.E., Brown V., Malter H.E., Warren S.T. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol. Cell. 1997;1(1):109-118. DOI 10.1016/s1097-2765(00)80012-x.

33. Forrest M.P., Parnell E., Penzes P. Dendritic structural plasticity and neuropsychiatric disease. Nat. Rev. Neurosci. 2018;19(4):215-234. DOI 10.1038/nrn.2018.16.

34. Fu Y.J., Liu D., Guo J.L., Long H.Y., Xiao W.B., Xiao W., Feng L., Luo Z.H., Xiao B. Dynamic change of shanks gene mRNA expression and DNA methylation in epileptic rat model and human patients. Mol. Neurobiol. 2020;57(9):3712-3726. DOI 10.1007/s12035-020-01968-5.

35. Gkogkas C.G., Sonenberg N. Translational control and autism-like behaviors. Cell. Logist. 2013;3:e24551. DOI 10.4161/cl.24551.

36. Gobert D., Schohl A., Kutsarova E., Ruthazer E.S. TORC1 selectively regulates synaptic maturation and input convergence in the developing visual system. Dev. Neurobiol. 2020. DOI 10.1002/dneu.22782.

37. Goldbeter A., Gonze D., Houart G., Leloup J.C., Halloy J., Dupont G. From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos. 2001;11:247-260. DOI 10.1063/1.1345727.

38. Gross C., Nakamoto M., Yao X., Chan C.B., Yim S.Y., Ye K., Warren S.T., Bassell G.J. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J. Neurosci. 2010;30:10624-10638. DOI 10.1523/JNEUROSCI.0402-10.2010.

39. Hong L., Li Y., Liu Q., Chen Q., Chen L., Zhou D. The Hippo signaling pathway in regenerative medicine. Methods Mol. Biol. 2019; 1893:353-370. DOI 10.1007/978-1-4939-8910-2_26.

40. Hu J.K., Du W., Shelton S.J., Oldham M.C., DiPersio C.M., Klein O.D. An FAK-YAP-mTOR signaling axis regulates stem cell-based tissue renewal in mice. Cell Stem Cell. 2017;21(1):91-106. DOI 10.1016/j.stem.2017.03.023.

41. Huber K.M., Kayser M.S., Bear M.F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science. 2000;288(5469):1254-1257. DOI 10.1126/science.288.5469.1254.

42. Huber K.M., Klann E., Costa-Mattioli M., Zukin R.S. Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J. Neurosci. 2015;35(41):13836-13842. DOI 10.1523/JNEUROSCI.2656-15.2015.

43. Iacoangeli A., Tiedge H. Translational control at the synapse: role of RNA regulators. Trends Biochem. Sci. 2013;38(1):47-55. DOI 10.1016/j.tibs.2012.11.001.

44. Ip C.K., Cheung A.N., Ngan H.Y., Wong A.S. p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells. Oncogene. 2011;30(21):2420-2432. DOI 10.1038/onc.2010.615.

45. Johnson S.C., Rabinovitch P.S., Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493(7432): 338-345. DOI 10.1038/nature11861.

46. Khlebodarova T.M., Kogai V.V., Fadeev S.I., Likhoshvai V.A. Chaos and hyperchaos in simple gene network with negative feedback and time delays. J. Bioinform. Comput. Biol. 2017;15(2):1650042. DOI 10.1142/S0219720016500426.

47. Khlebodarova T.M., Kogai V.V., Likhoshvai V.A. On the dynamical aspects of local translation at the activated synapse. BMC Bioinformatics. 2020;21(Suppl. 11):258. DOI 10.1186/s12859-020-03597-0.

48. Khlebodarova T.M., Kogai V.V., Trifonova E.A., Likhoshvai V.A. Dynamic landscape of the local translation at activated synapses. Mol. Psych. 2018;23(1):107-114. DOI 10.1038/mp.2017.245.

49. Khlebodarova T.M., Likhoshvai V.A., Kogai V.V. On the chaotic potential of local translation at activated synapses. In: Mathematical Biology and Bioinformatics. Puschino: IMPB RAS, 2018;7:e68.1-e68.6. DOI 10.17537/icmbb18.6. (in Russian)

50. Klein M.E., Monday H., Jordan B.A. Proteostasis and RNA binding proteins in synaptic plasticity and in the pathogenesis of neuropsychiatric disorders. Neural Plast. 2016;2016:3857934. DOI 10.1155/2016/3857934.

51. Kogai V.V., Khlebodarova T.M., Fadeev S.I., Likhoshvai V.A. Complex dynamics in alternative mRNA splicing: mathematical model. Vychislitelnye Technologii = Computational Technologies. 2015; 20(1):38-52. (in Russian)

52. Kogai V.V., Likhoshvai V.A., Fadeev S.I., Khlebodarova T.M. Multiple scenarios of transition to chaos in the alternative splicing model. Int. J. Bifurcat. Chaos. 2017;27(2):1730006. DOI 10.1142/S0218127417300063.

53. Lauterborn J.C., Cox C.D., Chan S.W., Vanderklish P.W., Lynch G., Gall C.M. Synaptic actin stabilization protein loss in Down syndrome and Alzheimer disease. Brain Pathol. 2020;30(2):319-331. DOI 10.1111/bpa.12779.

54. Levy Nogueira M., da Veiga Moreira J., Baronzio G.F., Dubois B., Steyaert J.M., Schwartz L. Mechanical stress as the common denominator between chronic inflammation, cancer, and Alzheimer’s disease. Front. Oncol. 2015;5:197. DOI 10.3389/fonc.2015.00197.

55. Levy Nogueira M., Epelbaum S., Steyaert J.M., Dubois B., Schwartz L. Mechanical stress models of Alzheimer’s disease pathology. Alzheimers Dement. 2016a;12(3):324-333. DOI 10.1016/j.jalz.2015.10.005.

56. Levy Nogueira M., Hamraz M., Abolhassani M., Bigan E., Lafitte O., Steyaert J.M., Dubois B., Schwartz L. Mechanical stress increases brain amyloid β, tau, and α-synuclein concentrations in wild-type mice. Alzheimers Dement. 2018;14(4):444-453. DOI 10.1016/j.jalz.2017.11.003.

57. Levy Nogueira M., Lafitte O., Steyaert J.M., Bakardjian H., Dubois B., Hampel H., Schwartz L. Mechanical stress related to brain atrophy in Alzheimer’s disease. Alzheimers Dement. 2016b;12(1):11-20. DOI 10.1016/j.jalz.2015.03.005.

58. Likhoshvai V.A., Fadeev S.I., Kogai V.V., Khlebodarova T.M. On the chaos in gene networks. J. Bioinform. Comput. Biol. 2013;11(1): 1340009. DOI 10.1142/S021972001340009X.

59. Likhoshvai V.A., Golubyatnikov V.P., Khlebodarova T.M. Limit сycles in models of circular gene networks regulated by negative feedbacks. BMC Bioinformatics. 2020;21(Suppl. 11):255. DOI 10.1186/s12859-020-03598-z.

60. Likhoshvai V.A., Khlebodarova T.M. On stationary solutions of delay differential equations: a model of local translation in synapses. Matematicheskaya Biologiya i Bioinformatika = Mathematical Biology and Bioinformatics. 2019;14(2):554-569. DOI 10.17537/2019.14.554. (in Russian)

61. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Alternative splicing can lead to chaos. J. Bioinform. Comput. Biol. 2015; 13(1):1540003. DOI 10.1142/S021972001540003X.

62. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Chaos and hyperchaos in a model of ribosome autocatalytic synthesis. Sci. Rep. 2016;6:38870. DOI 10.1038/srep38870.

63. Louros S.R., Osterweil E.K. Perturbed proteostasis in autism spectrum disorders. J. Neurochem. 2016;139(6):1081-1092. DOI 10.1111/jnc.13723.

64. Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science. 1977;197(4300):287-289. DOI 10.1126/science.267326.

65. Majumder P., Chu J.F., Chatterjee B., Swamy K.B., Shen C.J. Co-regulation of mRNA translation by TDP-43 and fragile X syndrome protein FMRP. Acta Neuropathol. 2016;132(5):721-738. DOI 10.1007/s00401-016-1603-8.

66. Martin I. Decoding Parkinson’s disease pathogenesis: the role of deregulated mRNA translation. J. Parkinsons Dis. 2016;6(1):17-27. DOI 10.3233/JPD-150738.

67. McCarthy N. Signalling: YAP, PTEN and miR-29 size each other up. Nat. Rev. Cancer. 2013;13(1):4-5. DOI 10.1038/nrc3422.

68. Mei Y., Monteiro P., Zhou Y., Kim J.A., Gao X., Fu Z., Feng G. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530(7591):481-484. DOI 10.1038/nature16971.

69. Meng X.F., Yu J.T., Song J.H., Chi S., Tan L. Role of the mTOR signaling pathway in epilepsy. J. Neurol. Sci. 2013;332(1-2):4-15. DOI 10.1016/j.jns.2013.05.029.

70. Millard T.H., Sharp S.J., Machesky L.M. Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem. J. 2004;380(Pt. 1):1-17. DOI 10.1042/BJ20040176.

71. Molinie N., Gautreau A. The Arp2/3 regulatory system and its deregulation in cancer. Physiol. Rev. 2018;98(1):215-238. DOI 10.1152/physrev.00006.2017.

72. Monteiro P., Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat. Rev. Neurosci. 2017;18(3):147-157. DOI 10.1038/nrn.2016.183.

73. Muddashetty R.S., Kelić S., Gross C., Xu M., Bassell G.J. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J. Neurosci. 2007;27(20):5338-5348. DOI 10.1523/JNEUROSCI.0937-07.2007.

74. Nakashima M., Kato M., Aoto K., Shiina M., Belal H., Mukaida S., Kumada S., Sato A., Zerem A., Lerman-Sagie T., Lev D., Leong H.Y., Tsurusaki Y., Mizuguchi T., Miyatake S., Miyake N., Ogata K., Saitsu H., Matsumoto N. De novo hotspot variants in CYFIP2 cause early-onset epileptic encephalopathy. Ann. Neurol. 2018;83(4):794-806. DOI 10.1002/ana.25208.

75. Nalavadi V.C., Muddashetty R.S., Gross C., Bassell G.J. Dephosphorylation-induced ubiquitination and degradation of FMRP in dendrites: a role in immediate early mGluR-stimulated translation. J. Neurosci. 2012;32(8):2582-2587. DOI 10.1523/JNEUROSCI.5057-11.2012.

76. Napoli I., Mercaldo V., Boyl P.P., Eleuteri B., Zalfa F., De Rubeis S., Di Marino D., Mohr E., Massimi M., Falconi M., Witke W., CostaMattioli M., Sonenberg N., Achsel T., Bagni C. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell. 2008;134(6):1042-1054. DOI 10.1016/j.cell.2008.07.031.

77. Narayanan U., Nalavadi V., Nakamoto M., Pallas D.C., Ceman S., Bassell G.J., Warren S.T. FMRP phosphorylation reveals an immediateearly signaling pathway triggered by group I mGluR and mediated by PP2A. J. Neurosci. 2007;27(52):14349-14357. DOI 10.1523/JNEUROSCI.2969-07.2007.

78. Narayanan U., Nalavadi V., Nakamoto M., Thomas G., Ceman S., Bassell G.J., Warren S.T. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J. Biol. Chem. 2008;283(27):18478-18482. DOI 10.1074/jbc.C800055200.

79. Nishiyama J. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders. Psychiat. Clin. Neurosci. 2019;73(9):541-550. DOI 10.1111/pcn.12899.

80. Onore C., Yang H., Van de Water J., Ashwood P. Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front. Pediatr. 2017;5:43. DOI 10.3389/fped.2017.00043.

81. Panciera T., Azzolin L., Cordenonsi M., Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 2017;18(12):758-770. DOI 10.1038/nrm.2017.87.

82. Peça J., Feliciano C., Ting J.T., Wang W., Wells M.F., Venkatraman T.N., Lascola C.D., Fu Z., Feng G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011; 472(7344):437-442. DOI 10.1038/nature09965.

83. Pei J.J., Hugon J. mTOR-dependent signalling in Alzheimer’s disease. J. Cell. Mol. Med. 2008;12(6b):2525-2532. DOI 10.1111/j.1582-4934.2008.00509.x.

84. Penzes P., Rafalovich I. Regulation of the actin cytoskeleton in dendritic spines. Adv. Exp. Med. Biol. 2012;970:81-95. DOI 10.1007/978-3-7091-0932-8_4.

85. Porokhovnik L. Individual copy number of ribosomal genes as a factor of mental retardation and autism risk and severity. Cells. 2019; 8(10):1151. DOI 10.3390/cells8101151.

86. Porokhovnik L.N., Lyapunova N.A. Dosage effects of human ribosomal genes (rDNA) in health and disease. Chromosome Res. 2019; 27(1-2):5-17. DOI 10.1007/s10577-018-9587-y.

87. Pramparo T., Pierce K., Lombardo M.V., Carter Barnes C., Marinero S., Ahrens-Barbeau C., Murray S.S., Lopez L., Xu R., Courchesne E. Prediction of autism by translation and immune/inflammation coexpressed genes in toddlers from pediatric community practice. JAMA Psychiatry. 2015;72:386-394. DOI 10.1001/jamapsychiatry.2014.3008.

88. Pyronneau A., He Q., Hwang J.Y., Porch M., Contractor A., Zukin R.S. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci. Signal. 2017;10(504):eaan0852. DOI 10.1126/scisignal.aan0852.

89. Reddy P., Deguchi M., Cheng Y., Hsueh A.J. Actin cytoskeleton regulates Hippo signaling. PLoS One. 2013;8(9):e73763. DOI 10.1371/journal.pone.0073763.

90. Rex C.S., Chen L.Y., Sharma A., Liu J., Babayan A.H., Gall C.M., Lynch G. Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol. 2009;186(1):85-97. DOI 10.1083/jcb.200901084.

91. Rosenberg T., Gal-Ben-Ari S., Dieterich D.C., Kreutz M.R., Ziv N.E., Gundelfinger E.D., Rosenblum K. The roles of protein expression in synaptic plasticity and memory consolidation. Front. Mol. Neurosci. 2014;7:86. DOI 10.3389/fnmol.2014.00086.

92. Santini E., Huynh T.N., Klann E. Mechanisms of translation control underlying long-lasting synaptic plasticity and the consolidation of long-term memory. Prog. Mol. Biol. Transl. Sci. 2014;122:131-167. DOI 10.1016/B978-0-12-420170-5.00005-2.

93. Schaks M., Reinke M., Witke W., Rottner K. Molecular dissection of neurodevelopmental disorder-causing mutations in CYFIP2. Cells. 2020;9(6):1355. DOI 10.3390/cells9061355.

94. Schaks M., Singh S.P., Kage F., Thomason P., Klünemann T., Steffen A., Blankenfeldt W., Stradal T.E., Insall R.H., Rottner K. Distinct interaction sites of RAC GTPase with WAVE regulatory complex have non-redundant functions in vivo. Curr. Biol. 2018;28(22): 3674-3684.e6. DOI 10.1016/j.cub.2018.10.002.

95. Seo J., Kim J. Regulation of Hippo signaling by actin remodeling. BMB Rep. 2018;51(3):151-156. DOI 10.5483/bmbrep.2018.51.3.012.

96. Sharma A., Hoeffer C.A., Takayasu Y., Miyawaki T., McBride S.M., Klann E., Zukin R.S. Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 2010;30(2):694-702. DOI 10.1523/JNEUROSCI.3696-09.2010.

97. Suzuki Y., Lu M., Ben-Jacob E., Onuchic J.N. Periodic, quasi-periodic and chaotic dynamics in simple gene elements with time delays. Sci. Rep. 2016;6:21037. DOI 10.1038/srep21037.

98. Tapon N., Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol. 1997;9(1): 86-92. DOI 10.1016/s0955-0674(97)80156-1.

99. Totaro A., Panciera T., Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat. Cell Biol. 2018;20(8):888-899. DOI 10.1038/s41556-018-0142-z.

100. Trifonova E.A., Khlebodarova T.M., Gruntenko N.E. Molecular mechanisms of autism as a form of synaptic dysfunction. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(6):959-967. DOI 10.18699/VJ16.217. (in Russian)

101. Trifonova E.A., Khlebodarova T.M., Gruntenko N.E. Molecular mechanisms of autism as a form of synaptic dysfunction. Russ. J. Genet.: Appl. Res. 2017;7(8):869-877.

102. Troca-Marin J.A., Alves-Sampaio A., Montesinos M.L. Deregulated mTOR-mediated translation in intellectual disability. Prog. Neurobiol. 2012;96(2):268-282. DOI 10.1016/j.pneurobio.2012.01.005.

103. Tumaneng K., Schlegelmilch K., Russell R.C., Yimlamai D., Basnet H., Mahadevan N., Fitamant J., Bardeesy N., Camargo F.D., Guan K.L. YAP mediates crosstalk between the Hippo and PI(3) K–TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 2012;14(12):1322-1329. DOI 10.1038/ncb2615.

104. Won H., Mah W., Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front. Mol. Neurosci. 2013;6:19. DOI 10.3389/fnmol.2013.00019.

105. Wong M. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies. Epilepsia. 2010;51(1):27-36. DOI 10.1111/j.1528-1167.2009.02341.x.

106. Wostyn P. Intracranial pressure and Alzheimer’s disease: a hypothesis. Med. Hypotheses. 1994;43(4):219-222. DOI 10.1016/0306-9877(94)90069-8.

107. Yu F.X., Zhao B., Guan K.L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163(4):811-828. DOI 10.1016/j.cell.2015.10.044.

108. Zamboni V., Jones R., Umbach A., Ammoni A., Passafaro M., Hirsch E., Merlo G.R. Rho GTPases in intellectual disability: from genetics to therapeutic opportunities. Int. J. Mol. Sci. 2018;19:1821. DOI 10.3390/ijms19061821.

109. Zhang Y., Lee Y., Han K. Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy. BMB Rep. 2019;52(5):304-311. DOI 10.5483/BMBRep.2019.52.5.097.

110. Zhou J., Parada L.F. PTEN signaling in autism spectrum disorders. Curr. Opin. Neurobiol. 2012;22(5):873-879. DOI 10.1016/j.conb.2012.05.004.

111. Zhu T., Ma Z., Wang H., Jia X., Wu Y., Fu L., Li Z., Zhang C., Yu G. YAP/TAZ affects the development of pulmonary fibrosis by regulating multiple signaling pathways. Mol. Cell. Biochem. 2020; 475(1-2):137-149. DOI 10.1007/s11010-020-03866-9.

112. Zukin R.S., Richter J.D., Bagni C. Signals, synapses, and synthesis: how new proteins control plasticity. Front. Neural Circuits. 2009; 3:14. DOI 10.3389/neuro.04.014.2009.

113. Zweier M., Begemann A., McWalter K., Cho M.T., Abela L., Banka S., Behring B., Berger A., Brown C.W., Carneiro M., Chen J., Cooper G.M. Deciphering Developmental Disorders (DDD) Study, Finnila C.R., Guillen Sacoto M.J., Henderson A., Hüffmeier U., Joset P., Kerr B., Lesca G., Leszinski G.S., McDermott J.H., Meltzer M.R., Monaghan K.G., Mostafavi R., Õunap K., Plecko B., Powis Z., Purcarin G., Reimand T., Riedhammer K.M., Schreiber J.M., Sirsi D., Wierenga K.J., Wojcik M.H., Papuc S.M., Steindl K., Sticht H., Rauch A. Spatially clustering de novo variants in CYFIP2, encoding the cytoplasmic FMRP interacting protein 2, cause intellectual disability and seizures. Eur. J. Hum. Genet. 2019;27(5):747-759. DOI 10.1038/s41431-018-0331-z.


Просмотров: 43


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)