Биоинформационный анализ сплайс-лидерного транс-сплайсинга у регенерирующего плоского червя Macrostomum lignano показал его преобладание среди консервативных генов и генов стволовых клеток
https://doi.org/10.18699/VJ21.012
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Полный текст:
Аннотация
Ключевые слова
Об авторах
К. В. УстьянцевРоссия
Новосибирск
Е. В. Березиков
Россия
Новосибирск
Список литературы
1. Allen M.A., Hillier L.W., Waterston R.H., Blumenthal T. A global analysis of C. elegans trans-splicing. Genome Res. 2011;21(2):255-264. https://doi.org/10.1101/gr.113811.110.
2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215(3):403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.
3. Bailey T.L. DREME: motif discovery in transcription factor ChIPseq data. Bioinformatics. 2011;27(12):1653-1659. https://doi.org/10.1093/bioinformatics/btr261.
4. Blumenthal T., Gleason K.S. Caenorhabditis elegans operons: form and function. Nat. Rev. Genet. 2003;4(2):110-118. https://doi.org/10.1038/nrg995.
5. Boothroyd J.C., Cross G.A. Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5 end. Gene. 1982;20(2):281-289. https://doi.org/10.1016/0378-1119(82)90046-4.
6. Conrad R., Liou R.F., Blumenthal T. Conversion of a trans-spliced C. elegans gene into a conventional gene by introduction of a splice donor site. EMBO J. 1993;12(3):1249-1255.
7. Danks G.B., Raasholm M., Campsteijn C., Long A.M., Manak J.R., Lenhard B., Thompson E.M. Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest. Mol. Biol. Evol. 2015;32(3):585-599. https://doi.org/10.1093/molbev/msu336.
8. Danks G., Thompson E.M. Trans-splicing in metazoans: A link to translational control? Worm. 2015;4(3):e1046030. https://doi.org/10.1080/21624054.2015.1046030.
9. Egger B., Ladurner P., Nimeth K., Gschwentner R., Rieger R. The regeneration capacity of the flatworm Macrostomum lignano - on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev. Genes Evol. 2006;216(10):565-577. https://doi.org/10.1007/s00427-006-0069-4.
10. Ershov N.I., Mordvinov V.A., Prokhortchouk E.B., Pakharukova M.Y., Gunbin K.V., Ustyantsev K., Genaev M.A., Blinov A.G., Mazur A., Boulygina E., Tsygankova S., Khrameeva E., Chekanov N., Fan G., Xiao A., Zhang H., Xu X., Yang H., Solovyev V., Lee S.M.-Y., Liu X., Afonnikov D.A., Skryabin K.G. New insights from Opisthorchis felineus genome: update on genomics of the epidemiologically important liver flukes. BMC Genomics. 2019;20(1):399. https://doi.org/10.1186/s12864-019-5752-8.
11. Ganot P., Kallesøe T., Reinhardt R., Chourrout D., Thompson E.M. Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. Mol. Cell. Biol. 2004;24(17):7795-7805. https://doi.org/10.1128/MCB.24.17.7795-7805.2004.
12. Gregory T.R., Nicol J.A., Tamm H., Kullman B., Kullman K., Leitch I.J., Murray B.G., Kapraun D.F., Greilhuber J., Bennett M.D. Eukaryotic genome size databases. Nucleic Acids Res. 2007;35(Suppl. 1): D332-D338. https://doi.org/10.1093/nar/gkl828.
13. Grudniewska M., Mouton S., Grelling M., Wolters A.H.G., Kuipers J., Giepmans B.N.G., Berezikov E. A novel flatworm-specific gene implicated in reproduction in Macrostomum lignano. Sci. Rep. 2018; 8(1):1-10. https://doi.org/10.1038/s41598-018-21107-4.
14. Grudniewska M., Mouton S., Simanov D., Beltman F., Grelling M., de Mulder K., Arindrarto W., Weissert P.M., van der Elst S., Berezikov E. Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano. eLife. 2016;5:e20607. https://doi.org/10.7554/eLife.20607.
15. Guan D., McCarthy S.A., Wood J., Howe K., Wang Y., Durbin R. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36(9):2896-2898. https://doi.org/10.1093/bioinformatics/btaa025.
16. Hastings K.E.M. SL trans-splicing: easy come or easy go? Trends Genet. 2005;21(4):240-247. https://doi.org/10.1016/j.tig.2005.02.005.
17. Krause M., Hirsh D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell. 1987;49(6):753-761. https://doi.org/10.1016/0092-8674(87)90613-1.
18. Ladurner P., Egger B., De Mulder K., Pfister D., Kuales G., Salvenmoser W., Schärer L. The stem cell system of the basal flatworm Macrostomum lignano. In: Bosch T.C.G. (Ed.). Stem Cells: From Hydra to Man. Dordrecht: Springer, Netherlands, 2008;75-94. https://doi.org/10.1007/978-1-4020-8274-0_5.
19. Lasda E.L., Blumenthal T. Trans-splicing. Wiley Interdiscip. Rev. RNA. 2011;2(3):417-434. https://doi.org/10.1002/wrna.71.
20. Lei Q., Li C., Zuo Z., Huang C., Cheng H., Zhou R. Evolutionary insights into RNA trans-splicing in vertebrates. Genome Biol. Evol. 2016;8(3):562-577. https://doi.org/10.1093/gbe/evw025.
21. Liou R.F., Blumenthal T. trans-spliced Caenorhabditis elegans mRNAs retain trimethylguanosine caps. Mol. Cell. Biol. 1990;10(4):1764-1768.
22. Matsumoto J., Dewar K., Wasserscheid J., Wiley G.B., Macmil S.L., Roe B.A., Zeller R.W., Satou Y., Hastings K.E.M. High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: Alternative expression modes and gene function correlates. Genome Res. 2010;20(5):636-645. https://doi.org/10.1101/gr.100271.109.
23. Mouton S., Grudniewska M., Glazenburg L., Guryev V., Berezikov E. Resilience to aging in the regeneration-capable flatworm Macrostomum lignano. Aging Cell. 2018;17(3):e12739. https://doi.org/10.1111/acel.12739.
24. Protasio A.V., Tsai I.J., Babbage A., Nichol S., Hunt M., Aslett M.A., Silva N.D., Velarde G.S., Anderson T.J.C., Clark R.C., Davidson C., Dillon G.P., Holroyd N.E., LoVerde P.T., Lloyd C., McQuillan J., Oliveira G., Otto T.D., Parker-Manuel S.J., Quail M.A., Wilson R.A., Zerlotini A., Dunne D.W., Berriman M. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 2012;6(1):e1455. https://doi.org/10.1371/journal.pntd.0001455.
25. Rossi A., Ross E.J., Jack A., Sánchez Alvarado A. Molecular cloning and characterization of SL3: A stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene. 2014;533(1):156-167. https://doi.org/10.1016/j.gene.2013.09.101.
26. Satou Y., Mineta K., Ogasawara M., Sasakura Y., Shoguchi E., Ueno K., Yamada L., Matsumoto J., Wasserscheid J., Dewar K., Wiley G.B., Macmil S.L., Roe B.A., Zeller R.W., Hastings K.E.M., Lemaire P., Lindquist E., Endo T., Hotta K., Inaba K. Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biol. 2008;9(10):R152. https://doi.org/10.1186/gb-2008-9-10-r152.
27. Stover N.A., Kaye M.S., Cavalcanti A.R.O. Spliced leader trans-splicing. Curr. Biol. 2006;16(1):R8-R9. https://doi.org/10.1016/j.cub.2005.12.019.
28. Wagner D.E., Wang I.E., Reddien P.W. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science. 2011;332(6031):811-816. https://doi.org/10.1126/science.1203983.
29. Wasik K., Gurtowski J., Zhou X., Ramos O.M., Delás M.J., Battistoni G., Demerdash O.E., Falciatori I., Vizoso D.B., Smith A.D., Ladurner P., Schärer L., McCombie W.R., Hannon G.J., Schatz M. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc. Natl. Acad. Sci. USA. 2015;112(40): 12462-12467. https://doi.org/10.1073/pnas.1516718112.
30. Wudarski J., Egger B., Ramm S.A., Schärer L., Ladurner P., Zadesenets K.S., Rubtsov N.B., Mouton S., Berezikov E. The free-living flatworm Macrostomum lignano. EvoDevo. 2020;11(1):5. https://doi.org/10.1186/s13227-020-00150-1.
31. Wudarski J., Simanov D., Ustyantsev K., de Mulder K., Grelling M., Grudniewska M., Beltman F., Glazenburg L., Demircan T., Wunderer J., Qi W., Vizoso D.B., Weissert P.M., Olivieri D., Mouton S., Guryev V., Aboobaker A., Schärer L., Ladurner P., Berezikov E. Efficient transgenesis and annotated genome sequence of the regenerative flatworm model Macrostomum lignano. Nat. Commun. 2017; 8(1):2120. https://doi.org/10.1038/s41467-017-02214-8.
32. Wudarski J., Ustyantsev K., Glazenburg L., Berezikov E. Influence of temperature on development, reproduction and regeneration in the flatworm model organism, Macrostomum lignano. Zool. Lett. 2019; 5(1):7. https://doi.org/10.1186/s40851-019-0122-6.
33. Xie H., Hirsh D. In vivo function of mutated spliced leader RNAs in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 1998;95(8): 4235-4240.
34. Zadesenets K.S., Schärer L., Rubtsov N.B. New insights into the karyotype evolution of the free-living flatworm Macrostomum lignano (Platyhelminthes, Turbellaria). Sci. Rep. 2017;7(1):6066. https://doi.org/10.1038/s41598-017-06498-0.
35. Zayas R.M., Bold T.D., Newmark P.A. Spliced-leader trans-splicing in freshwater planarians. Mol. Biol. Evol. 2005;22(10):2048-2054. https://doi.org/10.1093/molbev/msi200.
36. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406-3415. https://doi.org/10.1093/nar/gkg595.