Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Computational analysis of spliced leader trans-splicing in the regenerative flatworm Macrostomum lignano reveals its prevalence in conserved and stem cell related genes

https://doi.org/10.18699/VJ21.012

Abstract

In eukaryotes, trans-splicing is a process of nuclear pre-mRNA maturation where two different RNA molecules are joined together by the spliceosomal machinery utilizing mechanisms similar to cis-splicing. In diverse taxa of lower eukaryotes, spliced leader (SL) trans-splicing is the most frequent type of trans-splicing, when the same sequence derived from short small nuclear RNA molecules, called SL RNAs, is attached to the 5’ ends of different non-processed pre-mRNAs. One of the functions of SL trans-splicing is processing polycistronic pre-mRNA molecules transcribed from operons, when several genes are transcribed as one pre-mRNA molecule. However, only a fraction of trans-spliced genes reside in operons, suggesting that SL trans-splicing must also have some other, less understood functions. Regenerative flatworms are informative model organisms which hold the keys to understand the mechanism of stem cell regulation and specialization during regeneration and homeostasis. Their ability to regenerate is fueled by the division and differentiation of the adult somatic stem cell population called neoblasts. Macrostomum lignano is a flatworm model organism where substantial technological advances have been achieved in recent years, including the development of transgenesis. Although a large fraction of genes in M. lignano were estimated to be SL trans-spliced, SL trans-splicing was not studied in detail in M. lignano before. Here, we performed the first comprehensive study of SL trans-splicing in M. lignano. By reanalyzing the existing genome and transcriptome data of M. lignano, we estimate that 30 % of its genes are SL trans-spliced, 15 % are organized in operons, and almost 40 % are both SL trans-spliced and in operons. We annotated and characterized the sequence of SL RNA and characterized conserved cis- and SL transsplicing motifs. Finally, we found that a majority of SL trans-spliced genes are evolutionarily conserved and signif icantly over-represented in neoblast-specific genes. Our findings suggest an important role of SL trans-splicing in the regulation and maintenance of neoblasts in M. lignano.

About the Authors

K. V. Ustyantsev
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


E. V. Berezikov
Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


References

1. Allen M.A., Hillier L.W., Waterston R.H., Blumenthal T. A global analysis of C. elegans trans-splicing. Genome Res. 2011;21(2):255-264. DOI 10.1101/gr.113811.110.

2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215(3):403-410. DOI 10.1016/S0022-2836(05)80360-2.

3. Bailey T.L. DREME: motif discovery in transcription factor ChIPseq data. Bioinformatics. 2011;27(12):1653-1659. DOI 10.1093/bioinformatics/btr261.

4. Blumenthal T., Gleason K.S. Caenorhabditis elegans operons: form and function. Nat. Rev. Genet. 2003;4(2):110-118. DOI 10.1038/nrg995.

5. Boothroyd J.C., Cross G.A. Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5 end. Gene. 1982;20(2):281-289. DOI 10.1016/0378-1119(82)90046-4.

6. Conrad R., Liou R.F., Blumenthal T. Conversion of a trans-spliced C. elegans gene into a conventional gene by introduction of a splice donor site. EMBO J. 1993;12(3):1249-1255.

7. Danks G.B., Raasholm M., Campsteijn C., Long A.M., Manak J.R., Lenhard B., Thompson E.M. Trans-splicing and operons in metazoans: translational control in maternally regulated development and recovery from growth arrest. Mol. Biol. Evol. 2015;32(3):585-599. DOI 10.1093/molbev/msu336.

8. Danks G., Thompson E.M. Trans-splicing in metazoans: A link to translational control? Worm. 2015;4(3):e1046030. DOI 10.1080/21624054.2015.1046030.

9. Egger B., Ladurner P., Nimeth K., Gschwentner R., Rieger R. The regeneration capacity of the flatworm Macrostomum lignano – on repeated regeneration, rejuvenation, and the minimal size needed for regeneration. Dev. Genes Evol. 2006;216(10):565-577. DOI 10.1007/s00427-006-0069-4.

10. Ershov N.I., Mordvinov V.A., Prokhortchouk E.B., Pakharukova M.Y., Gunbin K.V., Ustyantsev K., Genaev M.A., Blinov A.G., Mazur A., Boulygina E., Tsygankova S., Khrameeva E., Chekanov N., Fan G., Xiao A., Zhang H., Xu X., Yang H., Solovyev V., Lee S.M.-Y., Liu X., Afonnikov D.A., Skryabin K.G. New insights from Opisthorchis felineus genome: update on genomics of the epidemiologically important liver flukes. BMC Genomics. 2019;20(1):399. DOI 10.1186/s12864-019-5752-8.

11. Ganot P., Kallesøe T., Reinhardt R., Chourrout D., Thompson E.M. Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. Mol. Cell. Biol. 2004;24(17):7795-7805. DOI 10.1128/MCB.24.17.7795-7805.2004.

12. Gregory T.R., Nicol J.A., Tamm H., Kullman B., Kullman K., Leitch I.J., Murray B.G., Kapraun D.F., Greilhuber J., Bennett M.D. Eukaryotic genome size databases. Nucleic Acids Res. 2007;35(Suppl. 1): D332-D338. DOI 10.1093/nar/gkl828.

13. Grudniewska M., Mouton S., Grelling M., Wolters A.H.G., Kuipers J., Giepmans B.N.G., Berezikov E. A novel flatworm-specific gene implicated in reproduction in Macrostomum lignano. Sci. Rep. 2018; 8(1):1-10. DOI 10.1038/s41598-018-21107-4.

14. Grudniewska M., Mouton S., Simanov D., Beltman F., Grelling M., de Mulder K., Arindrarto W., Weissert P.M., van der Elst S., Berezikov E. Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano. eLife. 2016;5:e20607. DOI 10.7554/eLife.20607.

15. Guan D., McCarthy S.A., Wood J., Howe K., Wang Y., Durbin R. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36(9):2896-2898. DOI 10.1093/bioinformatics/btaa025.

16. Hastings K.E.M. SL trans-splicing: easy come or easy go? Trends Genet. 2005;21(4):240-247. DOI 10.1016/j.tig.2005.02.005.

17. Krause M., Hirsh D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell. 1987;49(6):753-761. DOI 10.1016/0092-8674(87)90613-1.

18. Ladurner P., Egger B., De Mulder K., Pfister D., Kuales G., Salvenmoser W., Schärer L. The stem cell system of the basal flatworm Macrostomum lignano. In: Bosch T.C.G. (Ed.). Stem Cells: From Hydra to Man. Dordrecht: Springer, Netherlands, 2008;75-94. DOI 10.1007/978-1-4020-8274-0_5.

19. Lasda E.L., Blumenthal T. Trans-splicing. Wiley Interdiscip. Rev. RNA. 2011;2(3):417-434. DOI 10.1002/wrna.71.

20. Lei Q., Li C., Zuo Z., Huang C., Cheng H., Zhou R. Evolutionary insights into RNA trans-splicing in vertebrates. Genome Biol. Evol. 2016;8(3):562-577. DOI 10.1093/gbe/evw025.

21. Liou R.F., Blumenthal T. trans-spliced Caenorhabditis elegans mRNAs retain trimethylguanosine caps. Mol. Cell. Biol. 1990;10(4):1764-1768.

22. Matsumoto J., Dewar K., Wasserscheid J., Wiley G.B., Macmil S.L., Roe B.A., Zeller R.W., Satou Y., Hastings K.E.M. High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: Alternative expression modes and gene function correlates. Genome Res. 2010;20(5):636-645. DOI 10.1101/gr.100271.109.

23. Mouton S., Grudniewska M., Glazenburg L., Guryev V., Berezikov E. Resilience to aging in the regeneration-capable flatworm Macrostomum lignano. Aging Cell. 2018;17(3):e12739. DOI 10.1111/acel.12739.

24. Protasio A.V., Tsai I.J., Babbage A., Nichol S., Hunt M., Aslett M.A., Silva N.D., Velarde G.S., Anderson T.J.C., Clark R.C., Davidson C., Dillon G.P., Holroyd N.E., LoVerde P.T., Lloyd C., McQuillan J., Oliveira G., Otto T.D., Parker-Manuel S.J., Quail M.A., Wilson R.A., Zerlotini A., Dunne D.W., Berriman M. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 2012;6(1):e1455. DOI 10.1371/journal.pntd.0001455.

25. Rossi A., Ross E.J., Jack A., Sánchez Alvarado A. Molecular cloning and characterization of SL3: A stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene. 2014;533(1):156-167. DOI 10.1016/j.gene.2013.09.101.

26. Satou Y., Mineta K., Ogasawara M., Sasakura Y., Shoguchi E., Ueno K., Yamada L., Matsumoto J., Wasserscheid J., Dewar K., Wiley G.B., Macmil S.L., Roe B.A., Zeller R.W., Hastings K.E.M., Lemaire P., Lindquist E., Endo T., Hotta K., Inaba K. Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biol. 2008;9(10):R152. DOI 10.1186/gb-2008-9-10-r152.

27. Stover N.A., Kaye M.S., Cavalcanti A.R.O. Spliced leader trans-splicing. Curr. Biol. 2006;16(1):R8-R9. DOI 10.1016/j.cub.2005.12.019.

28. Wagner D.E., Wang I.E., Reddien P.W. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science. 2011;332(6031):811-816. DOI 10.1126/science.1203983.

29. Wasik K., Gurtowski J., Zhou X., Ramos O.M., Delás M.J., Battistoni G., Demerdash O.E., Falciatori I., Vizoso D.B., Smith A.D., Ladurner P., Schärer L., McCombie W.R., Hannon G.J., Schatz M. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc. Natl. Acad. Sci. USA. 2015;112(40): 12462-12467. DOI 10.1073/pnas.1516718112.

30. Wudarski J., Egger B., Ramm S.A., Schärer L., Ladurner P., Zadesenets K.S., Rubtsov N.B., Mouton S., Berezikov E. The free-living flatworm Macrostomum lignano. EvoDevo. 2020;11(1):5. DOI 10.1186/s13227-020-00150-1.

31. Wudarski J., Simanov D., Ustyantsev K., de Mulder K., Grelling M., Grudniewska M., Beltman F., Glazenburg L., Demircan T., Wunderer J., Qi W., Vizoso D.B., Weissert P.M., Olivieri D., Mouton S., Guryev V., Aboobaker A., Schärer L., Ladurner P., Berezikov E. Efficient transgenesis and annotated genome sequence of the regenerative flatworm model Macrostomum lignano. Nat. Commun. 2017; 8(1):2120. DOI 10.1038/s41467-017-02214-8.

32. Wudarski J., Ustyantsev K., Glazenburg L., Berezikov E. Influence of temperature on development, reproduction and regeneration in the flatworm model organism, Macrostomum lignano. Zool. Lett. 2019; 5(1):7. DOI 10.1186/s40851-019-0122-6.

33. Xie H., Hirsh D. In vivo function of mutated spliced leader RNAs in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA. 1998;95(8): 4235-4240.

34. Zadesenets K.S., Schärer L., Rubtsov N.B. New insights into the karyotype evolution of the free-living flatworm Macrostomum lignano (Platyhelminthes, Turbellaria). Sci. Rep. 2017;7(1):6066. DOI 10.1038/s41598-017-06498-0.

35. Zayas R.M., Bold T.D., Newmark P.A. Spliced-leader trans-splicing in freshwater planarians. Mol. Biol. Evol. 2005;22(10):2048-2054. DOI 10.1093/molbev/msi200.

36. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406-3415. DOI 10.1093/nar/gkg595.


Review

Views: 805


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)