Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Трансгенная клеточная линия с индуцируемой транскрипцией для исследования механизмов экспансии (CGG)n повторов

https://doi.org/10.18699/VJ21.014

Полный текст:

Аннотация

Существует ряд наследственных заболеваний человека, причиной которых является экспансия тандемных повторов. К ним относятся миотоническая дистрофия первого типа, болезнь Хантингтона, заболевания, ассоциированные с ломкой Х-­хромосомой. Синдром ломкой Х­-хромосомы – наиболее распространенная причина наследственной умственной отсталости у человека. На сегодняшний день причины развития экспансии остаются неисследованными. Важная особенность протяженных повторов – их способность формировать альтернативные вторичные структуры ДНК. Существуют гипотезы, объясняющие природу нестабильности повторов, однако все они предполагают возникновение устойчивых вторичных структур ДНК на различных этапах клеточного цикла. Источником нестабильности считаются нарушения в различных процессах метаболизма ДНК (репликация, репарация и рекомбинация), вызванные образованием вторичных структур. Однако ни одна из гипотез до конца не подтверждена и, видимо, не является единственно верной. Вероятно, в различных типах клеток и на определенных стадиях клеточного цикла источником нестабильности выступает множество процессов. В настоящей работе мы предлагаем экспериментальную систему для изучения вклада транскрипции и ассоциированной с ней репарации в нестабильность повтора (CGG)n, поскольку это наименее изученный механизм возникновения нестабильности. Однако предложенные модели могут учитывать вклад и других процессов метаболизма ДНК, например репликации, что делает полученные системы универсальными и применимыми в разных исследованиях. Нами были созданы трансгенные клеточные линии, несущие повтор нормальной и премутантной длины под тетрациклин­индуцируемым промотором. Один тип линий содержит плазмиду с экзогенным повтором, интегрированным в геном посредством транспозона Sleeping Beauty, в другой клеточной линии вектор поддерживается в виде эписомы благодаря ориджину репликации SV40. Такие трансгенные клеточные линии могут служить экспериментальной системой для поиска причин нестабильности и создания терапевтических средств. Кроме того, был разработан критерий для оценки нестабильности экзогенного (CGG)n повтора в геноме трансгенных клеточных линий, расчет которого не зависит от эффективности синтеза протяженных повторов.

Об авторах

И. В. Грищенко
Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Россия
р.п. Кольцово, Новосибирская область


А. А. Тулупов
Институт «Международный томографический центр» Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет
Россия
Новосибирск


Ю. М. Рымарева
Институт «Международный томографический центр» Сибирского отделения Российской академии наук
Россия
Новосибирск


Е. Д. Петровский
Институт «Международный томографический центр» Сибирского отделения Российской академии наук
Россия
Новосибирск


А. А. Савелов
Институт «Международный томографический центр» Сибирского отделения Российской академии наук
Россия
Новосибирск


А. М. Коростышевская
Институт «Международный томографический центр» Сибирского отделения Российской академии наук
Россия
Новосибирск


Ю. В. Максимова
Новосибирский государственный медицинский университет; Городская клиническая больница № 1
Россия
Новосибирск


А. Р. Шорина
Городская клиническая больница № 1
Россия
Новосибирск


Е. М. Шитик
Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Россия
р.п. Кольцово, Новосибирская область


Д. В. Юдкин
Государственный научный центр вирусологии и биотехнологии «Вектор» Роспотребнадзора
Россия
р.п. Кольцово, Новосибирская область


Список литературы

1. Bontekoe C.J.M. Instability of a (CGG)98 repeat in the Fmr1 promoter. Hum. Mol. Genet. 2001;10(16):1693-1699. DOI 10.1093/hmg/10.16.1693.

2. DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F., Boxer A.L., Baker M., Rutherford N.J., Nicholson A.M., Finch N.A., Flynn H., Adamson J., Kouri N., Wojtas A., Sengdy P., Hsiung G.Y.R., Karydas A., Seeley W.W., Josephs K.A., Coppola G., Geschwind D.H., Wszolek Z.K., Feldman H., Knopman D.S., Petersen R.C., Miller B.L., Dickson D.W., Boylan K.B., Graff-Radford N.R., Rademakers R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245-256. DOI 10.1016/j.neuron.2011.09.011.

3. Fouche N., Ozgur S., Roy D., Griffith J.D. Replication fork regression in repetitive DNAs. Nucleic Acids Res. 2006;34(20):6044-6050. DOI 10.1093/nar/gkl757.

4. Gorbunova V., Seluanov A., Dion V., Sandor Z., Meservy J.L., Wilson J.H. Selectable system for monitoring the instability of CTG/ CAG triplet repeats in mammalian cells. Mol. Cell. Biol. 2003; 23(13):4485-4493. DOI 10.1128/mcb.23.13.4485-4493.2003.

5. Grishchenko I.V., Purvinsh Y.V., Yudkin D.V. Mystery of expansion: DNA metabolism and unstable repeats. In: Zharkov D.O. (Ed.). Mechanisms of Genome Protection and Repair. Cham: Springer International Publishing, 2020;101-124. DOI 10.1007/978-3-030-41283-8_7.

6. Groh M., Lufino M.M.P., Wade-Martins R., Gromak N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 2014;10(5): e1004318. DOI 10.1371/journal.pgen.1004318.

7. Hayward B.E., Zhou Y., Kumari D., Usdin K. A Set of assays for the comprehensive analysis of FMR1 alleles in the Fragile X-related disorders. J. Mol. Diagn. 2016;18(5):762-774. DOI 10.1016/j.jmoldx.2016.06.001.

8. Heulens I., Suttie M., Postnov A., De Clerck N., Perrotta C.S., Mattina T., Faravelli F., Forzano F., Kooy R.F., Hammond P. Craniofacial characteristics of fragile X syndrome in mouse and man. Eur. J. Hum. Genet. 2013;21(8):816-823. DOI 10.1038/ejhg.2012.265.

9. Jensen M.A., Fukushima M., Davis R.W. DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PLoS One. 2010;5:e11024. DOI 10.1371/journal.pone.0011024.

10. Kononenko A.V., Ebersole T., Mirkin S.M. Experimental system to study instability of (CGG)n repeats in cultured mammalian cells. In: Richard G.-F. (Ed.). Trinucleotide Repeats: Methods and Protocols. New York: Springer, 2020;137-150. DOI 10.1007/978-1-4939-9784-8_9.

11. Kovalenko M., Dragileva E., St Claire J., Gillis T., Guide J.R., New J., Dong H., Kucherlapati R., Kucherlapati M.H., Ehrlich M.E., Lee J.M., Wheeler V.C. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington’s disease knock-in mice. PloS One. 2012;7(9): e44273. DOI 10.1371/journal.pone.0044273.

12. Krasilnikova M.M., Kireeva M.L., Petrovic V., Knijnikova N., Kashlev M., Mirkin S.M. Effects of Friedreich’s ataxia (GAA)n*(TTC)n repeats on RNA synthesis and stability. Nucleic Acids Res. 2007; 35(4):1075-1084. DOI 10.1093/nar/gkl1140.

13. Lam E.Y.N., Beraldi D., Tannahill D., Balasubramanian S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. 2014;4(1)1-8. DOI 10.1038/ncomms2792.

14. Lee J.M., Zhang J., Su A.I., Walker J.R., Wiltshire T., Kang K., Dragileva E., Gillis T., Lopez E.T., Boily M.J., Cyr M., Kohane I., Gusella J.F., MacDonald M.E., Wheeler V.C. A novel approach to investigate tissue-specific trinucleotide repeat instability. BMC Syst. Biol. 2010;4(1):29. DOI 10.1186/1752-0509-4-29.

15. Lokanga R.A., Entezam A., Kumari D., Yudkin D., Qin M., Smith C.B., Usdin K. Somatic expansion in mouse and human carriers of fragile X premutation alleles. Hum. Mutat. 2013;34(1):157-166. DOI 10.1002/humu.22177.

16. Mailick M.R., Movaghar A., Hong J., Greenberg J.S., DaWalt L.S., Zhou L., Jackson J., Rathouz P.J., Baker M.W., Brilliant M., Page D., Berry-Kravis E. Health profiles of mosaic versus non-mosaic FMR1 premutation carrier mothers of children with fragile X syndrome. Front. Genet. 2018;9:173. DOI 10.3389/fgene.2018.00173.

17. Martin G.E., Roberts J.E., Helm-Estabrooks N., Sideris J., Vanderbilt J., Moskowitz L. Perseveration in the connected speech of boys with fragile X syndrome with and without autism spectrum disorder. Am. J. Intellect. Dev. Disab. 2012;117(5):384-399. DOI 10.1352/1944-7558-117.5.384.

18. Monckton D.G., Wong L.J.C., Ashizawa T., Caskey C.T. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 1995;4(1):1-8. DOI 10.1093/hmg/4.1.1.

19. Morales F., Couto J.M., Higham C.F., Hogg G., Cuenca P., Braida C., Wilson R.H., Adam B., Del Valle G., Brian R., Sittenfeld M., Ashizawa T., Wilcox A., Wilcox D.E., Monckton D.G. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum. Mol. Genet. 2012;21(16):3558-3567. DOI 10.1093/hmg/dds185.

20. Pearson C.E., Sinden R.R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry. 1996;35(15):5041-5053. DOI 10.1021/bi9601013.

21. Roberts J., Hennon E.A., Anderson K. Fragile X syndrome and speech and language. ASHA Leader. 2003;8(19):6-27. DOI 10.1044/leader.FTR2.08192003.6.

22. Shah K.A., Mirkin S.M. The hidden side of unstable DNA repeats: Mutagenesis at a distance. DNA Repair. 2015;32:106-112. DOI 10.1016/j.dnarep.2015.04.020.

23. Usdin K., Woodford K.J. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res. 1995;23(20):4202-4209.

24. Woodford K., Weitzmann M.N., Usdin K. The use of K(+)-free buffers eliminates a common cause of premature chain termination in PCR and PCR sequencing. Nucleic Acids Res. 1995;23(3):539. DOI 10.1093/nar/23.3.539.

25. Yudkin D.V., Lemskaya N.A., Grischenko I.V., Dolskiy A.A. Chromatin changes caused by expansion of CGG repeats in fmr1 gene. Mol. Biol. 2015;49(2):179-184.

26. Zhao X.-N., Lokanga R., Allette K., Gazy I., Wu D., Usdin K. A MutSbeta-dependent contribution of MutSalpha to repeat expansions in fragile X premutation mice? PLoS Genet. 2016;12(7): e1006190. DOI 10.1371/journal.pgen.1006190.


Просмотров: 53


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)