Preview

Vavilov Journal of Genetics and Breeding

Advanced search

A transgenic cell line with inducible transcription for studying (CGG)n repeat expansion mechanisms

https://doi.org/10.18699/VJ21.014

Abstract

There are more than 30 inherited human disorders connected with repeat expansion (myotonic dystrophy type I, Huntington’s disease, Fragile X syndrome). Fragile X syndrome is the most common reason for inherited intellectual disability in the human population. The ways of the expansion development remain unclear. An important feature of expanded repeats is the ability to form stable alternative DNA secondary structures. There are hypotheses about the nature of repeat instability. It is proposed that these DNA secondary structures can block various stages of DNA metabolism processes, such as replication, repair and recombination and it is considered as the source of repeat instability. However, none of the hypotheses is fully conf irmed or is the only valid one. Here, an experimental system for studying (CGG)n repeat expansion associated with transcription and TCR­-NER is proposed. It is noteworthy that the aberrations of transcription are a poorly studied mechanism of (CGG)n instability. However, the proposed systems take into account the contribution of other processes of DNA metabolism and, therefore, the developed systems are universal and applicable for various studies. Transgenic cell lines carrying a repeat of normal or premutant length under the control of an inducible promoter were established and a method for repeat instability quantif ication was developed. One type of the cell lines contains an exogenous repeat integrated into the genome by the Sleeping Beauty transposon; in another cell line, the vector is maintained as an episome due to the SV40 origin of replication. These experimental systems can serve for f inding the causes of instability and the development of therapeutic agents. In addition, a criterion was developed for the quantif ication of exogenous (CGG)n repeat instability in the transgenic cell lines’ genome.

About the Authors

I. V. Grishchenko
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation
Koltsovo, Novosibirsk region


A. A. Tulupov
International Tomography Center of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation
Novosibirsk


Y. M. Rymareva
International Tomography Center of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


E. D. Petrovskiy
International Tomography Center of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


A. A. Savelov
International Tomography Center of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


A. M. Korostyshevskaya
International Tomography Center of Siberian Branch of the Russian Academy of Sciences
Russian Federation
Novosibirsk


Y. V. Maksimova
Novosibirsk State Medical University; Novosibirsk City Clinical Hospital No. 1
Russian Federation
Novosibirsk


A. R. Shorina
Novosibirsk City Clinical Hospital No. 1
Russian Federation
Novosibirsk


E. M. Shitik
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation
Koltsovo, Novosibirsk region


D. V. Yudkin
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation
Koltsovo, Novosibirsk region


References

1. Bontekoe C.J.M. Instability of a (CGG)98 repeat in the Fmr1 promoter. Hum. Mol. Genet. 2001;10(16):1693-1699. DOI 10.1093/hmg/10.16.1693.

2. DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F., Boxer A.L., Baker M., Rutherford N.J., Nicholson A.M., Finch N.A., Flynn H., Adamson J., Kouri N., Wojtas A., Sengdy P., Hsiung G.Y.R., Karydas A., Seeley W.W., Josephs K.A., Coppola G., Geschwind D.H., Wszolek Z.K., Feldman H., Knopman D.S., Petersen R.C., Miller B.L., Dickson D.W., Boylan K.B., Graff-Radford N.R., Rademakers R. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245-256. DOI 10.1016/j.neuron.2011.09.011.

3. Fouche N., Ozgur S., Roy D., Griffith J.D. Replication fork regression in repetitive DNAs. Nucleic Acids Res. 2006;34(20):6044-6050. DOI 10.1093/nar/gkl757.

4. Gorbunova V., Seluanov A., Dion V., Sandor Z., Meservy J.L., Wilson J.H. Selectable system for monitoring the instability of CTG/ CAG triplet repeats in mammalian cells. Mol. Cell. Biol. 2003; 23(13):4485-4493. DOI 10.1128/mcb.23.13.4485-4493.2003.

5. Grishchenko I.V., Purvinsh Y.V., Yudkin D.V. Mystery of expansion: DNA metabolism and unstable repeats. In: Zharkov D.O. (Ed.). Mechanisms of Genome Protection and Repair. Cham: Springer International Publishing, 2020;101-124. DOI 10.1007/978-3-030-41283-8_7.

6. Groh M., Lufino M.M.P., Wade-Martins R., Gromak N. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet. 2014;10(5): e1004318. DOI 10.1371/journal.pgen.1004318.

7. Hayward B.E., Zhou Y., Kumari D., Usdin K. A Set of assays for the comprehensive analysis of FMR1 alleles in the Fragile X-related disorders. J. Mol. Diagn. 2016;18(5):762-774. DOI 10.1016/j.jmoldx.2016.06.001.

8. Heulens I., Suttie M., Postnov A., De Clerck N., Perrotta C.S., Mattina T., Faravelli F., Forzano F., Kooy R.F., Hammond P. Craniofacial characteristics of fragile X syndrome in mouse and man. Eur. J. Hum. Genet. 2013;21(8):816-823. DOI 10.1038/ejhg.2012.265.

9. Jensen M.A., Fukushima M., Davis R.W. DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PLoS One. 2010;5:e11024. DOI 10.1371/journal.pone.0011024.

10. Kononenko A.V., Ebersole T., Mirkin S.M. Experimental system to study instability of (CGG)n repeats in cultured mammalian cells. In: Richard G.-F. (Ed.). Trinucleotide Repeats: Methods and Protocols. New York: Springer, 2020;137-150. DOI 10.1007/978-1-4939-9784-8_9.

11. Kovalenko M., Dragileva E., St Claire J., Gillis T., Guide J.R., New J., Dong H., Kucherlapati R., Kucherlapati M.H., Ehrlich M.E., Lee J.M., Wheeler V.C. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington’s disease knock-in mice. PloS One. 2012;7(9): e44273. DOI 10.1371/journal.pone.0044273.

12. Krasilnikova M.M., Kireeva M.L., Petrovic V., Knijnikova N., Kashlev M., Mirkin S.M. Effects of Friedreich’s ataxia (GAA)n*(TTC)n repeats on RNA synthesis and stability. Nucleic Acids Res. 2007; 35(4):1075-1084. DOI 10.1093/nar/gkl1140.

13. Lam E.Y.N., Beraldi D., Tannahill D., Balasubramanian S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. 2014;4(1)1-8. DOI 10.1038/ncomms2792.

14. Lee J.M., Zhang J., Su A.I., Walker J.R., Wiltshire T., Kang K., Dragileva E., Gillis T., Lopez E.T., Boily M.J., Cyr M., Kohane I., Gusella J.F., MacDonald M.E., Wheeler V.C. A novel approach to investigate tissue-specific trinucleotide repeat instability. BMC Syst. Biol. 2010;4(1):29. DOI 10.1186/1752-0509-4-29.

15. Lokanga R.A., Entezam A., Kumari D., Yudkin D., Qin M., Smith C.B., Usdin K. Somatic expansion in mouse and human carriers of fragile X premutation alleles. Hum. Mutat. 2013;34(1):157-166. DOI 10.1002/humu.22177.

16. Mailick M.R., Movaghar A., Hong J., Greenberg J.S., DaWalt L.S., Zhou L., Jackson J., Rathouz P.J., Baker M.W., Brilliant M., Page D., Berry-Kravis E. Health profiles of mosaic versus non-mosaic FMR1 premutation carrier mothers of children with fragile X syndrome. Front. Genet. 2018;9:173. DOI 10.3389/fgene.2018.00173.

17. Martin G.E., Roberts J.E., Helm-Estabrooks N., Sideris J., Vanderbilt J., Moskowitz L. Perseveration in the connected speech of boys with fragile X syndrome with and without autism spectrum disorder. Am. J. Intellect. Dev. Disab. 2012;117(5):384-399. DOI 10.1352/1944-7558-117.5.384.

18. Monckton D.G., Wong L.J.C., Ashizawa T., Caskey C.T. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum. Mol. Genet. 1995;4(1):1-8. DOI 10.1093/hmg/4.1.1.

19. Morales F., Couto J.M., Higham C.F., Hogg G., Cuenca P., Braida C., Wilson R.H., Adam B., Del Valle G., Brian R., Sittenfeld M., Ashizawa T., Wilcox A., Wilcox D.E., Monckton D.G. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum. Mol. Genet. 2012;21(16):3558-3567. DOI 10.1093/hmg/dds185.

20. Pearson C.E., Sinden R.R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry. 1996;35(15):5041-5053. DOI 10.1021/bi9601013.

21. Roberts J., Hennon E.A., Anderson K. Fragile X syndrome and speech and language. ASHA Leader. 2003;8(19):6-27. DOI 10.1044/leader.FTR2.08192003.6.

22. Shah K.A., Mirkin S.M. The hidden side of unstable DNA repeats: Mutagenesis at a distance. DNA Repair. 2015;32:106-112. DOI 10.1016/j.dnarep.2015.04.020.

23. Usdin K., Woodford K.J. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res. 1995;23(20):4202-4209.

24. Woodford K., Weitzmann M.N., Usdin K. The use of K(+)-free buffers eliminates a common cause of premature chain termination in PCR and PCR sequencing. Nucleic Acids Res. 1995;23(3):539. DOI 10.1093/nar/23.3.539.

25. Yudkin D.V., Lemskaya N.A., Grischenko I.V., Dolskiy A.A. Chromatin changes caused by expansion of CGG repeats in fmr1 gene. Mol. Biol. 2015;49(2):179-184.

26. Zhao X.-N., Lokanga R., Allette K., Gazy I., Wu D., Usdin K. A MutSbeta-dependent contribution of MutSalpha to repeat expansions in fragile X premutation mice? PLoS Genet. 2016;12(7): e1006190. DOI 10.1371/journal.pgen.1006190.


Review

Views: 782


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)