Preview

Vavilov Journal of Genetics and Breeding

Advanced search

EFFECT OF REARRANGEMENTS OF HOMOEOLOGOUS GROUP 2 CHROMOSOMES OF BREAD WHEAT ON SPIKE MORPHOLOGY

Abstract

Four genetically independent bread wheat lines with altered spike morphology caused by development of supernumerary spikelets at rachis nodes were characterized by modern methods of karyotype analysis, Cbanding and FISH. Three lines carried rearrangements of group 2 chromosomes: substitution of chromosome 2D and deletions of 2D, terminal and interstitial. The deletion breakpoints were defined by microsatellite analysis. The deletions were co-localized on the genetic map with the MRS1 gene, whose mutation caused the development of clusters of supernumerary spikelets at rachis nodes. Evaluations of spike phenotypes of the line with the supernumerary spikelet trait and Chinese Spring deletion lines carrying deletions of chromosomes 2A, 2B, and 2D demonstrated that deletion of a group 2 chromosome might alter spike morphology, resulting in development of supernumerary spikelets at rachis nodes and changes in spike length and density.

About the Authors

O. B. Dobrovol’skaya
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


P. Martinek
Agrotest Fyto, Ltd, Kroměříž, Czech Republic
Czech Republic


I. G. Adonina
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


E. D. Badaeva
Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
Russian Federation


Yu. L. Orlov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


E. A. Salina
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


L. I. Laikova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Добровольская О.Б., Бадаева Е.Д., Адонина И.Г., Попова О.М., Красников А.А., Лайкова Л.И. Изучение морфогенеза соцветия и выявление особенностей наследования признака «многоколосковость» у мутантной линии мягкой пшеницы (Triticum aestivum L.) // Онтогенез. 2014. Т. 45. № 6. С. 434–441.

2. Добровольская О.Б., Сурдий П., Бернард М., Салина Е.А. Синтения хромосом генома А двух эволюционных линий пшеницы // Генетика. 2009. Т. 45. № 11. С. 1548–1555.

3. Дорофеев В.Ф., Коровина О.Н. Культурная флора СССР. Т. 1. Пшеницы. Л.: Колос, 1979.

4. Гончаров Н.П. Сравнительная генетика пшениц и их сородичей. Изд. 2-е испр. и доп. Новосибирск: Акад. изд-во «Гео», 2012. 523 c.

5. Мельник В.М., Пастухов Г.П. Генетические исследования индуцированных мутантов яровой пшеницы. Химический мутагенез в повышении продуктивности сельскохозяйственных растений. М.: Наука, 1984. 270 c.

6. Лайкова Л.И., Арбузова В.С., Попова О.М. и др. Изучение ветвистости колоса у мутантных линий мягкой пшеницы сорта Саратовская 29 // Актуальные задачи селекции и семеноводства сельскохозяйственных растений на современном этапе. Докл. и сообщения IX генетико-селекционной школы. 5–9 апреля 2004 г. Новосибирск, 2005. С. 388–393.

7. Badaeva E.D., Badaev N.S., Gill B.S. et al. Intraspecific karyotype divergence in Triticum araraticum (Poaceae) // Plant Syst. Evol. 1994. V. 192. P. 117–145.

8. Dobrovolskaya O., Martinek P., Röder M.S., Börner A. Microsatellite mapping of a mutant gene (mrs) for multirow spike in wheat (T. aestivum) // Proc. of Intern. Conf. «Conventional and molecular breeding of fi eld and vegetable crops» 22–27 November 2008, Novi Sad, Serbia. P. 133–136.

9. Dobrovolskaya O., Martinek P., Voylokov A.V. et al. Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T. aestivum) and rye (S. cereale) // Theor. Appl. Genet. 2009. V. 119. P. 867–874.

10. Endo T.R., Gill B.S. The deletion stocks of common wheat // J. Hered. 1996. V. 87. P. 295–307.

11. Gill B.S., Friebe B., Endo T.R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum) // Genome. 1991. V. 34. P. 830–839.

12. Haque M. A., Martinek P., Kobayashi S. et al. Microsatellite mapping of genes for semi-dwarfism and branched spike in Triticum durum Desf. var. ramosoobscurum Jakubz. «Vetvistokoloskaya» // Genet. Resour. Crop Evol. 2012. V. 59. P. 831–837.

13. Klindworth D.L., Williams N.D., Joppa L.R. Inheritance of supernumerary spikelets in a tetraploid wheat cross // Genome. 1990. V. 33. P. 509–514.

14. Košner J., Foltýn J. Chromozomalní poměry pšenice obecné (Triticum aestivum L.) s větevnatým klasem // Sbor. ÚVTIZ, Genet. Šlecht. 1989. 25. Nо. 1. P. 11–17.

15. Li J., Wang Q., Wei H., Hu X., Yang W. SSR Mapping for locus conferring on the triple-spikelet trait of the Tibetan triplespikelet wheat (Triticum aestivum L. concv. tripletum) // Triticeae Genomics. Genet. 2011. V. 2. Nо. 1 P. 1–6.

16. Mac Key J. Mutagenesis in vulgare wheat // Hereditas. 1968. V. 53. P. 505–517.

17. Malcomber S.T., Preston J.C., Reinheimer R. et al. Developmental gene evolution and the origin of grass infl orescence diversity // Developmental Genetics of the Flower / Eds D.E. Soltis, P.S. Soltis, J. Leebens-Mack // Adv. Bot. Res. 2006. V. 44. P. 423–479.

18. Martinek P., Bednar J. Changes of spike morphology (multirow spike – MRS, long glumes – LG) in wheat (Triticum aestivum L.) and their importance for breeding // Proc. of Intern. Conf. «Genetic Collections, isogenic and alloplasmic lines». Novosibirsk, Russia, 2001. P. 192–194.

19. Muramatsu M. A presumed genetic system determining the number of spikelets per rachis node in the tribe Triticeae // Breed. Sci. 2009. V. 59. P. 617–620.

20. Pennell A.L., Halloran G.M. Inheritance of supernumerary spikelets in wheat // Euphytica. 1983. V. 32. P. 767–776.

21. Sakuma S., Salomon B., Komatsuda T. The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops // Plant Cell Physiol. 2011. V. 52. P. 738–749.

22. Salina E.A., Lim Y.K., Badaeva E.D. et al. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids // Genome. 2006. V. 49. P. 1023–1035.

23. Sears E.R. The aneuploids of common wheat. Columbia, Mo., Univ. of Missouri Press, 1954. Р. 3–58.

24. Sharman B.C. Branched head in wheat and wheat hybrids // Nature. 1944. V. 153. P. 497–498.

25. Shewry P.R. Wheat // J. Exp. Bot. 2009. V. 60. No. 6. P. 1537–1553.

26. Sourdille P., Tixier M.H., Charmet G. et al. Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers // Mol. Breed. 2000. Nо. 6. P. 247–255.

27. Swaminathan M.S., Chopra V.L., Sastry G.R.K. Expression and stability of an induced mutation for ear branching in bread wheat // Curr. Sci. 1966. V. 35. P. 91–92.

28. Yang W.-Y., Lu B.-R., Hu X.-R., Yu Y., Zhang Y. Inheritance of the triple-spikelet character in a Tibetan landrace of common wheat // Genet. Resour. Crop Evol. 2005. V. 52. P. 847–851.


Review

Views: 556


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)