Preview

Vavilov Journal of Genetics and Breeding

Advanced search

MOLECULAR DIVERSITY OF COMMON WHEAT INTROGRESSION LINES (T. AESTIVUM / T. TIMOPHEEVII)

Abstract

Genetic diversity of T. aestivum/T. timopheevii introgression lines was studied with regard to microsatellite loci and resistance to fungal diseases. Genotyping of hybrid lines and parental common wheat cultivars for 143 SSR markers revealed 521 and 440 alleles, respectively, or 3,24/2,73 alleles per microsatellite locus on the average. Comparison of genetic diversity indices of individual chromosomes revealed the lowest diversity for SSR loci on chromosomes 4D and 5D and the highest (0,62–0,67), on 5B and 6A. Evaluation of SSR polymorphisms and indices H in the three genomes of introgression lines indicated that the chromosomes of genome B had higher rates than A or D (B > A > D) which was probably a result of alien introgression into these chromosomes. Comparison of the results of molecular and phytopathological tests allows us to conclude that despite the severe selection for resistance to leaf rust in early generations and a large number of generations of selfing, the genetic diversity of introgression lines on microsatellite loci is preserved, which is indicative of the stability of alien genetic material in the common wheat genome.

About the Authors

I. N. Leonova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


O. A. Orlovskaya
Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
Belarus


M. S. Röder
Leibniz Institute of Plant Genetics and Crop Plant Research, Germany
Germany


M. A. Nesterov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


E. B. Budashkina
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Абугалиева С.И., Волкова Л.А., Ермекбаев К.А., Туруспеков Е.К. Генотипирование коммерческих сортов яровой мягкой пшеницы Казахстана с использованием микросателлитных ДНК-маркеров // Биотехнология. Теория и практика. 2012. № 2. С. 35–45.

2. Гордеева Е.И., Леонова И.Н., Калинина Н.П., Салина Е.А., Будашкина Е.Б. Сравнительный цитологический и молекулярный анализ интрогрессивных линий мягкой пшеницы, содержащих генетический материал Triticum timopheevii Zhuk. // Генетика. 2009. Т. 45. С. 1616–1626.

3. Захаренко В.А., Медведев А.М., Ерохина С.А. и др. Методика по оценке устойчивости сортов полевых культур на инфекционных и провокационных фонах. М.: Россельхозакадемия, 2000. 88 с.

4. Леонова И.Н., Добровольская О.Б., Каминская Л.Н. и др. Молекулярный анализ линий тритикале, содержащих различные системы Vrn генов, с помощью микросателлиных маркеров и гибридизации in situ // Генетика. 2005. Т. 41. С. 1236−1243.

5. Леонова И.Н., Родер М.С., Калинина Н.П., Будашкина Е.Б. Генетический анализ и локализация локусов, контролирующих устойчивость интрогрессивных линий Triticum aestivum × Triticum timopheevii к листовой ржавчине // Генетика. 2008. Т. 44. С. 1652–1659.

6. Митрофанова О.П., Стрельченко П.П., Зуев Е.В., Стрит К., Конопка Я., Маккей М. О генетическом разнообразии местных сортов мягкой пшеницы, собранных научными экспедициями в Афганистане // Вавилов. журн. генет. и селекции. 2012. Т. 16. С. 579–591.

7. Barakat M.N., Al-Doss A.A., Elshafei A.A., Ghazy A.I., Khaled A.M. Assessment of genetic diversity among wheat doubled haploid plants using TRAP markers and morpho-agronomic traits // Austr. J. Crop Sci. 2013. V. 7. P. 104–111.

8. Bryan G.L., Collins A.J., Stephenson P. et al. Isolation and characterization of microsatellites from hexaploid bread wheat // Theor. Appl. Genet. 1997. V. 94. P. 557–563.

9. Budashkina E.B., Kalinina N.P. Development and genetic analysis of common wheat introgressive lines resistant to leaf rust // Acta Phytopathol. Entomol. 2001. V. 36. P. 61–65.

10. Cox T.S., Murphy J.P., Rodgers D.M. Changes in genetic diversity in the red winter wheat from regions of the United States // Proc. Natl Acad. Sci. USA. 1986. V. 83. P. 5583–5586.

11. Deng X.J., Luo X.D., Dai L.F. et al. Genetic diversity and genetic changes in the introgression lines derived from Oryza sativa L. mating with O. rufi pogon Griff. // J. Integr. Agric. 2012. V. 11. P. 1059–1066.

12. Dice L.R. Measures of the amount of ecologic association between species // Ecology. 1945. V. 26. P. 297–302.

13. Dreisigacker S., Zhang P., Warburton M.L. et al. SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments // Crop Sci. 2004. V. 44. P. 381–388.

14. Dreisigacker S., Melchinger A.E., Zhang P. et al. Hybrid performance and heterosis in spring bread wheat, and their relations to SSR-based genetic distances and coefficients of parentage // Euphytica. 2005. V. 144. P. 51–59.

15. Falke K.C., Susić Z., Wilde P. et al. Testcross performance of rye introgression lines developed by marker-assisted backcrossing using an Iranian accession as donor // Theor. Appl. Genet. 2009. V. 118. P. 1225–1238.

16. Ganal M.W., Röder M.S. Microsatellite and SNP markers in wheat breeding // Genomics assisted Crop Improvement / Eds R.K. Varshney, R. Tuberosa. Springer, 2007. V. 2. P. 1–24.

17. Ganeva G., Korzun V., Landjeva S. et al. Genetic diversity assessment of Bulgarian durum wheat (Triticum durum Desf.) landraces and modern cultivars using microsatellite markers // Genet. Resour. Crop Ev. 2010. V. 57. P. 273–285.

18. Graner A., Ludwig W.F., Melchinger A.E. Relationship among European barley germplasm. II. Comparison of RFLP and pedigree data // Crop Sci. 1995. V. 34. P. 1199–1205.

19. Huang X.Q., Börner A., Röder M.S., Ganal M.W. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers // Theor. Appl. Genet. 2002. V. 105. P. 699–707.

20. Jiang, H., Gao Q.R., Li L.J. et al. Genetic diversity of recurrent selection populations with Ms2 gene assessed by gliadins in common wheat (Triticum aestivum L.) // Agr. Sci. China. 2010. V. 9. P. 615–625.

21. Landjeva S., Korzun V., Börner A. Molecular markers: actual and potential contributions to wheat genome characterization and breeding // Euphytica. 2007. V. 156. P. 271–296.

22. Li L., Yaoyu X., Wensheng C. et al. The genetic variation of the backcross modifi ed lines developed from the maize line 08-641 selected by different directions // Sci. Res. 2012. V. 3. P. 918–922.

23. Liu J., Liu L., Hou N. et al. Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite mar kers and morphological traits // Euphytica. 2007. V. 155. P. 249–258.

24. Mains E.B., Jackson H.S. Physiological specialization in the leaf rust of wheat, Puccinia triticina Erikss // Phytopathology. 1926. V. 16. P. 89–120.

25. Marić S., Bolarić S., Martinčić J., Pejić I., Kozumplik V. Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage // Plant Breeding. 2004. V. 123. P. 366–369.

26. Masum Akond A.S.M.G., Watanabe N., Furuta Y. Comparative genetic diversity of Triticum aestivum–Triticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment // Genet. Resour. Crop Evol. 2008. V. 55. P. 133–141.

27. Nei M. Analysis of gene diversity in subdivided populations // Proc. Natl Acad. Sci. USA. 1973. V. 70. P. 3321–3323.

28. Noori A., Ahmadikhah A., Soughi H., Dehghan M. The effects of selection for multiple traits on diversity of advanced wheat lines revealed by molecular markers // Adv. Appl. Sci. Res. 2010. V. 1. P. 153–159.

29. Rauf S., Tariq S.A., Hassan S.W. Estimation of pedigree based diversity in Pakistani wheat (Triticum aestvium L.) germplasm // Commun. Biometry Crop Sci. 2012. V. 7. P. 14–22.

30. Riberto-Carvalho C., Guedes-Pinto H., Igrejas G. et al. High levels of genetic diversity throughout the range of the portuguese wheat landrace ‘Barbela’ // Ann. Botany. 2004. V. 94. P. 699–705.

31. Rohlf F.J. NTSYS-pc: numerical taxonomy and multivariate analysis system, vers. 2.0. N.Y.: Applied Biostatistics Inc., 1998.

32. Roussel V., Leisova L., Exbrayat F. et al. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000 // Theor. Appl. Genet. 2005. V. 111. P. 162–170.

33. Salina E.A., Leonova I.N., Efremova T.T., Röder M.S. Wheat genome structure: translocations during the course of polyploidization // Funct. Integr. Genomics. 2006. V. 6. P. 71–80.

34. Teklu Y., Hammer K., Huang X.Q., Röder M.S. Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces // Genet. Resour. Crop Ev. 2006. V. 53. P. 1115–1126.

35. van de Wouw M., Kik C., van Hintum T. et al. Genetic erosion in crops: concept, research results and challenges // Plant Genet. Resour. 2009. V. 8. P. 1–15.

36. Vanzetti L.S., Yerkovich N., Chialvo1 E. et al. Genetic structure of Argentinean hexaploid wheat germplasm // Genet. Mol. Biol. 2013. V. 36. P. 391–399.

37. Varshney R.K., Mahendar T., Aggarwal R.K., Börner A. Genic molecular markers in plants: development and applications // Genomics-Assisted Crop Improvement / Eds R.K. Varshney, R. Tuberosa. 2007. V. 1. P. 13–29.

38. Zhang P., Dreisigacker S., Melchinger A.E. et al. Quantifying novel sequence variation and selective advantage in synthetic hexaploid wheats and their backcross-derived lines using SSR markers // Mol. Breed. 2005. V. 15. P. 1–10.

39. Zhang L.Y., Liu D.C., Guo X.L. et al. Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers // BMC Genet. 2011. V. 12. P. 42.


Review

Views: 719


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)