Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Mutations in the A34R gene increase the immunogenicity of vaccinia virus

https://doi.org/10.18699/VJ21.017

Abstract

Vaccination is the most simple and reliable approach of protection to virus infections. The most effective agents are live vaccines, usually low-virulence organisms for humans and closely related to pathogenic viruses or attenuated as a result of mutations/deletions in the genome of pathogenic virus. Smallpox vaccination with live vaccinia virus (VACV) closely related to smallpox virus played a key role in the success of the global smallpox eradication program carried out under the World Health Organization auspices. As a result of the WHO decision as of 1980 to stop smallpox vaccination, humankind has lost immunity not only to smallpox, but also to other zoonotic, orthopoxviruscaused human infections. This new situation allows orthopoxviruses to circulate in the human population and, as a consequence, to alter several established concepts of the ecology and range of sensitive hosts for various orthopoxvirus species. Classic VACV-based live vaccine for vaccination against orthopoxvirus infections is out of the question, because it can cause severe side effects. Therefore, the development of new safe vaccines against orthopoxviral infections of humans and animals is an important problem. VACV attenuation by modern approaches carried out by targeted inactivation of certain virus genes and usually leads to a decrease in the effectiveness of VACV in vivo propagation. As a result, it can cause a diminishing of the immune response after administration of attenuated virus to patients at standard doses. The gene for thymidine kinase is frequently used for insertion/inactivation of foreign genes and it causes virus attenuation. In this research, the effect of the introduction of two point mutations into the A34R gene of attenuated strain LIVP-GFP (ТК–), which increase the yield of extracellular enveloped virions (EEV), on the pathogenicity and immunogenicity of VACV LIVP-GFP-A34R administered intranasally to laboratory mice were studied. It was shown that increase in EEV production by recombinant strain VACV LIVP-GFP-A34R does not change the attenuated phenotype characteristic of the parental strain LIVP-GFP, but causes a significantly larger production of VACV-specific antibodies.

About the Authors

S. N. Shchelkunov
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Koltsovo, Novosibirsk region;

Novosibirsk



T. V. Bauer
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



S. N. Yakubitskiy
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



A. A. Sergeev
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



A. S. Kabanov
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



S. A. Pyankov
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region



References

1. Bauer T.V., Tregubchak T.V., Shchelkunov S.N., Maksyutov R.A., Gavrilova E.V. Obtaining vaccinia virus with increased production of extracellular enveloped virions and directing GM­CSF synthesis as a promising basis for development of antitumor drug. Meditsinskaya immunologiya = Medical Immunology (Russia). 2020;22(2):371­378. DOI 10.15789/1563­0625­OVV­1594. (in Russian)

2. Zverev V.V., Yuminova N.V. Vaccines. Prevention of viral infections from E. Jenner to date. Voprosy Virusologii = Problems of Virology. 2012;S1:33­42. (in Russian)

3. Shchelkunov S.N. Antivirus vaccines: from Jenner to date. Sorosovskiy Obrazovatelnyy Zhurnal = Soros Education Journal. 1998; 7:43­50. (in Russian)

4. Shchelkunov S.N., Sergeev A.A., Kabanov A.S., Yakubitskiy S.N., Bauer T.V., Pyankov S.A. Route­coupled pathogenicity and immunogenicity of vaccinia virus variant inoculated mice. Russian Journal of Infection and Immunity. 2020;10. DOI 10.15789/2220­7619­PAI­1375. (in Russian)

5. Albarnaz J.D., Torres A.A., Smith G.L. Modulating vaccinia virus immunomodulators to improve immunological memory. Viruses. 2018; 10:e101. DOI 10.3390/v10030101.

6. Belyakov I.M., Earl P., Dzutsev A., Kuznetsov V.A., Lemon M., Wyatt L.S., Snyder J.T., Ahlers J.D., Franchini G., Moss B., Berzofsry J.A. Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc. Natl. Acad. Sci. USA. 2003;100(16):9458­9463. DOI 10.1073/10.1073/pnas.1233578100.

7. Blasco R., Sisler J.R., Moss B. Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: Effect of a point mutation in the lectin homology domain of the A34R gene. J. Virol. 1993;67(6):3319­3325.

8. Breiman A., Carpentier D.C.J., Ewles H.A., Smith G.L. Transport and stability of the vaccinia virus A34 protein is affected by the A33 protein. J. Gen. Virol. 2013;94:720­725. DOI 10.1099/vir.0.049486­0.

9. Dai K., Liu Y., Liu M., Xu J., Huang W., Huang X., Liu L., Wan Y., Hao Y., Shao Y. Pathogenicity and immunogenicity of recombinant Tiantan vaccinia virus with deleted C12L and A53R genes. Vaccine. 2008;26(39):5062­5071. DOI 10.1016/j.vaccine.2008.06.011.

10. Earley A.E., Chan W.M., Ward B.M. The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions. J. Virol. 2008;82(5):2161­2169. DOI 10.1128/JVI.01971­07.

11. Fenner F., Henderson D.A., Arita I., Jezek Z., Ladnyi I.D. Smallpox and Its Eradication. Geneva: World Health Organization, 1988.

12. Goncharova E.P., Ruzhenkova J.S., Petrov I.S., Shchelkunov S.N., Zenkova M.A. Oncolytic virus efficiency inhibited growth of tumour cells with multiple drug resistant phenotype in vivo and in vitro. J. Transl. Med. 2016;14(1):e241. DOI 10.1186/s12967­016­1002­x.

13. Guo Z.S., Lu B., Guo Z., Giehl E., Feist M., Dai E., Liu W., Storkus W.J., He Y., Liu Z., Bartlett D.L. Vaccinia virus­mediated cancer immunotherapy: cancer vaccines and oncolytics. J. Immunother. Cancer. 2019;7(1):6. DOI 10.1186/s40425­018­0495­7.

14. Jacobs B.L., Langland J.O., Kibler K.V., Denzler K.L., White S.D., Holechek S.A., Wong S., Huynh T., Baskin C.R. Vaccinia virus vaccines: Past, present and future. Antiviral Res. 2009;84:1­13. DOI 10.1016/j.antiviral.2009.06.006.

15. Kirn D.H., Wang Y., Liang W., Contag C.H., Thorne S.H. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res. 2008;68(7):2071­2075. DOI 10.1158/0008­5472.CAN­07­6515.

16. Kretzschmar M., Wallinga J., Teunis P., Xing S., Mikolajczyk R. Frequency of adverse events after vaccination with different vaccinia strains. PLoS Med. 2006;3:e272. DOI 10.1371/journal.pmed.0030272.

17. Kutinova L., Ludvikova V., Simonova V., Otarova M., Krystoforova J., Hainz P., Press M., Kunke D., Vonka V. Search for optimal parent for recombinant vaccinia virus vaccines. Study of three vaccinia virus vaccinal strains and several virus lines derived from them. Vaccine. 1995;13(5):487­493.

18. Lee M.S., Roos J.M., McGuigan L.C., Smith K.A., Cormier N., Cohen L.K., Roberts B.E., Payne L.G. Molecular attenuation of vaccinia virus: Mutant generation and animal characterization. J. Virol. 1992;66(5):2617­2630.

19. Li Y., Zhu Y., Chen S., Li W., Yin X., Li S., Xiao P., Han J., Li X., Sun L., Jin N. Generation of an attenuated Tiantan vaccinia virus strain by deletion of multiple genes. Front. Cell. Infect. Microbiol. 2017;7:462. DOI 10.3389/fcimb.2017.00462.

20. Li Z., Rubin S.A., Taffs R.E., Merchlinsky M., Ye Z., Carbone K.M. Mouse neurotoxicity test for vaccinia­based smallpox vaccines. Vaccine. 2004;22:1486­1493. DOI 10.1016/j.vaccine.2003.10.022.

21. Locker J.K., Kuehn A., Schleich S., Rutter G., Hohenberg H., Wepf R., Griffiths G. Entry of the two infectious forms of vaccinia virus at the plasma membrane is signaling­dependent for IMV but not the EEV. Mol. Biol. Cell. 2000;11:2497­2511. DOI 10.1091/mbc.11.7.2497.

22. Mackett M. Recombinant live virus vaccines. Immunol. Lett. 1987; 16(3­4):243­248. DOI 10.1016/0165­2478(87)90153­2.

23. McIntosh A.A.G., Smith G.L. Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J. Virol. 1996; 70(1):272­281.

24. McNulty S., Powell K., Erneux C., Kalman D. The host phosphoinositide 5­phosphatase SHIP2 regulates dissemination of vaccinia virus. J. Virol. 2011;85(14):7402­7410. DOI 10.1128/JVI.02391­10.

25. Monticelli S.R., Earley A.K., Tate J., Ward B.M. The ectodomain of the vaccinia virus glycoprotein A34 is required for cell binding by extracellular virions and contains a large region capable of interaction with glycoprotein B5. J. Virol. 2019;93(4):e01343­18. DOI 10.1128/JVI.01343­18.

26. Moss B. Smallpox vaccines: targets of protective immunity. Immunol. Rev. 2011;239(1):8­26. DOI 10.1111.j.1600­065X.2010.00975.x.

27. Payne L.G. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J. Gen. Virol. 1980;50:89­100.

28. Petrov I.S., Goncharova E.P., Pozdnyakov S.G., Shchelkunov S.N., Zenkova M.A., Vlasov V.V., Kolosova I.V. Antitumor effect of the LIVPGFP recombinant vaccinia virus. Dokl. Biol. Sci. 2013;451(1):248­252. DOI 10.1134/S0012496613040133.

29. Phelps A., Gates A.J., Eastaugh L., Hillier M., Ulaeto D.O. Comparative efficacy of intramuscular and scarification routes of administration of live smallpox vaccine in a murine challenge model. Vaccine. 2017;35:3889­3896. DOI 10.1016/j.vaccine.2017.05.058.

30. Reynolds M.G., Doty J.B., McCollum A.M., Olson V.A., Nakazawa Y. Monkeypox re­emergence in Africa: a call to expand the concept and practice of One Health. Expert Rev. Anti Infect. Ther. 2019;17(2): 129­139. DOI 10.1080/14787210.2019.1567330.

31. Sanchez­Sampedro L., Perdiguero B., Mejias­Perez E., Garcia­Arriaza J., Di Pilato M., Esteban M. The evolution of poxvirus vaccines. Viruses. 2015;7:1726­1803. DOI 10.3390/v7041726.

32. Shchelkunov S.N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013;9(12):e1003756. DOI 10.1371/journal.ppat.1003756.

33. Shchelkunov S.N. Emergence and reemergence of smallpox: the need in development of a new generation smallpox vaccine. Vaccine. 2011;29S:D49­D53. DOI 10.1016/j.vaccine.2011.05.037.

34. Shchelkunov S.N., Marennikova S.S., Moyer R.W. Orthopoxviruses Pathogenic for Humans. New York: Springer, 2005.

35. Shchelkunov S.N., Nesterov A.E., Ryazankin I.A., Ignat’ev G.M., Sandakhchiev L.S. Development of a candidate polyvalent live vaccine against human immunodeficiency, hepatitis B, and orthopoxviruses. Dokl. Biochem. Biophys. 2003;390:180­183.

36. Shchelkunov S.N., Razumov I.A., Kolosova I.V., Romashchenko A.V., Zavjalov E.L. Virotherapy of the malignant U87 human glioblastoma in the orthotopic xenotransplantation mouse SCID model. Dokl. Biochem. Biophys. 2018;478:30­33. DOI 10.1134/S1607672918010088.

37. Shchelkunov S.N., Shchelkunova G.A. Genes that control vaccinia virus immunogenicity. Acta Naturae. 2020;12(1):33­41. DOI 10.32607/actanaturae.10935.

38. Smith G.L., Vanderplasschen A., Law M. The formation of extracellular enveloped vaccinia virus. J. Gen. Virol. 2002;83:2915­2931. DOI 10.1099/vir.0.18733­0.

39. Styczynski A., Burgado J., Walteros D., Usme­Ciro J., Laiton K., Farias A.P., Nakazawa Y., Chapman C., Davidson W., Mauldin M., Morgan C., Martinez­Ceron J., Patina E., Lopez Sepulveda L.L., Torres C.P., Cruz Suarez A.E., Olaya G.P., Riveros C.E., Cepeda D.Y., Lopez L.A., Espinosa D.G., Gutierrez Lozada F.A., Li Y., Satheshkumar P.S., Reynolds M., Gracia­Romero M., Petersen B. Seroprevalence and risk factors possibly associated with emerging zoonotic vaccinia virus in a farming community, Colombia. Emerg. Infect. Dis. 2019;25(12):2169­2176. DOI 10.3201/eid2512.181114.

40. Sumner R.P., Ren H., Ferguson B.J., Smith G.L. Increased attenuation but decreased immunogenecity by deletion of multiple vaccinia virus immunomodulators. Vaccine. 2016;34:4827­4834. DOI 10.1016/j.vaccine.2016.08.002.

41. Thirunavukarasu P., Sathaiah M., Gorry M.C., O’Malley M.E., Ravindranathan R., Austin F., Thorne S.H., Guo Z.S., Bartlett D.I. A rationally designed A34R mutant oncolytic poxvirus: Improved efficacy in peritoneal carcinomatosis. Mol. Ther. 2013;21(5):1024­1033. DOI 10.1038/mt.2013.27.

42. Yakubitskiy S.N., Kolosova I.V., Maksyutov R.A., Shchelkunov S.N. Attenuation of vaccinia virus. Acta Naturae. 2015;7(4):113­121.


Review

Views: 833


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)