Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Problems and possibilities of studying malting quality in barley using molecular genetic approaches

https://doi.org/10.18699/VJ21.021

Abstract

About one-third of the world’s barley crop is used for malt production to meet the needs of the brewing industry. In this regard, the study of the genetic basis of malting quality traits and the breeding of malting barley varieties that are adaptive to their growing conditions are relevant throughout the world, particularly in the Russian Federation, where the cultivation and use of foreign malting varieties of barley prevails. The main parameters of malting quality (artificially germinated and dried barley grains) are malt extract, diastatic power, Kolbach index, viscosity, grain protein, wort β-glucan, free amino nitrogen, and soluble protein content. Most of these components are under the control of quantitative trait loci (QTLs) and are affected by environmental conditions, which complicates their study and precise localization. In addition, the phenotypic assessment of malting quality traits requires elaborate, expensive phenotypic analyses. Currently, there are more than 200 QTLs associated with malting parameters, which were identified using biparental mapping populations. Molecular markers are widely used both for mapping QTL loci responsible for malting quality traits and for performing marker-assisted selection (MAS), which, in combination with conventional breeding, makes it possible to create effective strategies aimed at accelerating the process of obtaining new promising genotypes. Nevertheless, the MAS of malting quality traits faces a series of difficulties, such as the low accuracy of localization of QTLs, their ineffectiveness when transferred to another genetic background, and linkage with undesirable traits, which makes it necessary to validate QTLs and the molecular markers linked to them. This review presents the results of studies that used MAS to improve the malting quality of barley, and it also considers studies that searched for associations between genotype and phenotype, carried out using GWAS (genome-wide association study) approaches based on the latest achievements of high-throughput genotyping (diversity array technology (DArT) and single-nucleotide polymorphism markers (SNPs)).

About the Authors

N. V. Trubacheeva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Kurchatov Genomics Center of ICG SB RAS
Russian Federation

Novosibirsk



L. A. Pershina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Kurchatov Genomics Center of ICG SB RAS
Russian Federation

Novosibirsk



References

1. Anis’kov N.I., Nikolaev P.N., Popolzukhin P.V., Safonova I.V., Bratseva L.I. A new middle-ripening spring malting barley variety Omskiy 100. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of Altai State Agricultural University. 2016; 4(138):14-19. (in Russian)

2. Ayoub M., Armstrong E., Bridger G., Fortin M.G., Mather D.E. Marker-based selection in barley for a QTL region affecting alpha amylase activity of malt. Crop Sci. 2003;43:556-561.

3. Bamforth C.W. Current perspectives on the role of enzymes in brewing. J. Cereal Sci. 2009;50:353-357. DOI 10.1016/j.jcs.2009.03.001.

4. Beattie A.D., Edney M.J., Scoles G.J., Rossnagel B.G. Association mapping of malting quality data from western Canadian two-row barley cooperative trials. Crop Sci. 2010;50(5):1649. DOI 10.2135/cropsci2009.06.0334.

5. Bond J., Capehart T., Allen E., Kim G. Boutique Brews, Barley, and the Balance Sheet: Changes in Malt Barley Industrial Use Require an Updated Forecasting Approach. Washington, DC: Economic Research Division, United Stated Department of Agriculture, 2015;18-23.

6. Cai S., Yu G., Chen X., Huang Y.C., Jiang X.G., Zhang G.P., Jin X. Grain protein content variation and its association analysis in barley. BMC Plant Biol. 2013;13(35). DOI 10.1186/1471-2229-13-35.

7. Castro A., Cammarota L., Gomez B., Gutierrez L., Hayes P.M., Locatelli A., Motta L., Pieroni S. Genome-wide association mapping of malting quality traits in relevant barley germplasm in Uruguay. In: Zhang G., Li C., Liu X. (Eds.). Advances in Barley Sciences. New York: Springer, 2013;37-46. DOI 10.1007/978-94-007-4682-4_3.

8. Chen J., Dai F., Wei K., Zhang G. Relationship between malt qualities and β-amylase activity and protein content as affected by timing of nitrogen fertilizer application. J. Zhejiang Univ. Sci. B. 2006;7: 79-84. DOI 10.1631/jzus.2006.B0079.

9. Close T.J., Bhat P.R., Lonardi S., Wu Y., Rostoks N., Ramsay L., Druka A., Stein N., Svensson J.T., Wanamaker S., Bozdag S., Roose M.L., Moscou M.J., Chao S., Varshney R.K., Szucs P., Sato K., Hayes P.M., Matthews D.E., Kleinhofs A., Muehlbauer G.J., DeYoung J., Marshall D.F., Madishetty K., Fenton R.D., Condamine P., Graner A., Waugh R. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009; 10:582. DOI 10.1186/1471-2164-10-582.

10. Coles G.D., Jamieson P.D., Haslemore R.M. Effect of moisture stress on malting quality in triumph barley. J. Cereal Sci. 1991;14:161-177. DOI 10.1016/S0733-5210.

11. Collins H.M., Panozzo J.F., Logue S.J., Jefferies S.P., Barr A.R. Mapping and validation of chromosome regions associated with high malt extract in barley (Hordeum vulgare L.). Aust. J. Agric. Res. 2003;54:1223-1240. DOI 10.1071/AR02201.

12. Condon F., Gustus C., Rasmusson D., Smith K. Effect of advanced cycle breeding on genetic diversity in barley breeding germplasm. Crop Sci. 2008;48:1027-1036. DOI 10.2135/cropsci2007.07.0415.

13. Coventry S.J., Collins H.M., Barr A.R., Jefferies S.P., Chalmers K.J., Logue S.J., Langridge P. Use of putative QTLs and structural genes in marker assisted selection for diastatic power in malting barley (Hordeum vulgare L.). Aust. J. Agric. Res. 2003;54:1241-1250. DOI 10.1071/AR02193.

14. Cu S.T., March T.J., Stewart S., Degner S., Coventry S., Box A., Stewart D., Skadhauge B., Burton R.A., Fincher G.B., Eglinton J. Genetic analysis of grain and malt quality in an elite barley population. Mol. Breed. 2016;36:129. DOI 10.1007/s11032-016-0554-z.

15. Cullis B.R., Smith A.B., Panozzo J.F., Lim P. Barley malting quality: are we selecting the best? Aust. J. Agric. Res. 2003;54:1261-1275. DOI 10.1071/AR02195.

16. Edney M.J., Mather D.E. Quantitative trait loci affecting germination traits and malt friability in a two-rowed by six rowed barley cross. J. Cereal Sci. 2004;39:283-290. DOI 10.1016/j.jcs.2003.10.008.

17. Elía M., Swanston J.S., Moralejo M., Casas A., Pérez-Vendrell A.M., Ciudad F.J., Thomas W.T.B., Smith P.L., Ullrich S.E., Molina-Cano J.-L. A model of the genetic differences in malting quality between European and north American barley cultivars based on a QTL study of the cross Triumph ×Morex. Plant Breed. 2010;129: 280-290. DOI 10.1111/j.1439-0523.2009.01694.x.

18. Emebiri L.C., Moody D.B., Horsley R., Panozzo J., Read B.J. The genetic control of grain protein content variation in a doubled haploid population derived from a cross between Australian and north American two-rowed barley lines. J. Cereal Sci. 2005;41:107-114. DOI 10.1016/j.jcs.2004.08.012.

19. Erkkilä M.J. Intron III-specific markers for screening of β-amylase alleles in barley cultivars. Plant Mol. Biol. Rep. 1999;17:139-147. DOI 10.1023/A:1007595821379.

20. Fan C., Zhai H., Wang H., Yue Y., Zhang M., Li J., Wen S., Guo G., Zeng Y., Ni Z., You M. Identification of QTLs controlling grain protein concentration using a high-density SNP and SSR linkage map in barley (Hordeum vulgare L.). BMC Plant Biol. 2017;17(1):122. DOI 10.1186/s12870-017-1067-6.

21. Fang Y., Zhang X., Xue D. Genetic analysis and molecular breeding applications of malting quality QTLs in barley. Front. Genet. 2019; 10:352. DOI 10.3389/fgene.2019.00352.

22. Foster A.E., Peterson G.A., Banasik O.J. Heritability of factors affecting malting quality of barley. Crop Sci. 1967;7:611-613. DOI 10.2135/cropsci1967.0011183X000700060016x.

23. Fox G.P., Panozzo J.F., Li C.D., Lance R.C.M., Inkerman P.A., Henry R.J. Molecular basis of barley quality. Aust. J. Agric. Res. 2003; 54:1081-1101. https://doi.org/10.1071/AR02237.

24. Goncharov S.V., Mordovin A.N. Malting barley is a driver of intensification. In: Biologization of Agriculture: Prospects and Real Opportunities. Voronezh, 2019;116-125. (in Russian)

25. Han F., Romagosa I., Ullrich S., Jones B., Hayes P., Wesenberg D. Molecular marker-assisted selection for malting quality traits in barley. Mol. Breed. 1997;3:427-437. DOI 10.1023/A:1009608312385.

26. Hayes P., Castro A., Marquez-Cedillo L., Corey A., Henson C., Jones B., Kling J., Mather D., Matus I., Rossi C. A summary of published barley. QTL Reports. 2000. http://www.barleyworldorg/northamericanbarley/qtlsummaryphp.

27. Hirota N., Kaneko T., Kuroda H., Kaneda H., Takashio M., Ito K., Takeda K. Characterization of lipoxygenase-1 null mutants in barley. Theor. Appl. Genet. 2005;111(8):1580-1584. DOI 10.1007/s00122-005-0088-y.

28. Hirota N., Kuroda H., Takoi K., Kaneko T., Kaneda H., Yoshida I., Takashio M., Ito K., Takeda K. Brewing performance of malted lipoxygenase-1 null barley and effect on the flavor stability of beer. Cereal Chem. 2006;83(3):250-254. DOI 10.1094/CC-83-0250.

29. Igartua E., Edney M., Rossnagel B.G., Spaner D., Legge W.G., Scoles G.J., Eckstein P.E., Penner G.A., Tinker N.A., Briggs K.G., Falk D.E., Mather D.E. Marker-based selection of QTL affecting grain and malt quality in two-row barley. Crop Sci. 2000;40:1426-1433. DOI 10.2135/cropsci2000.4051426x.

30. Iimure T., Kihara M., Ichikawa S., Ito K., Takeda K., Sato K. Development of DNA markers associated with beer foam stability for barley breeding. Theor. Appl. Genet. 2011;122:199-210. DOI 10.1007/s00122-010-1436-0.

31. Laidò G., Barabaschi D., Tondelli A., Gianinetti A., Stanca A.M., Li Destri Nicosia O., NDi F., Francia E., Pecchioni N. QTL alleles from a winter feed type can improve malting quality in barley. Plant Breed. 2009;128:598-605. DOI 10.1111/j.1439-0523.2009.01636.x.

32. Lee S.J., Penner G.A. The conversion of RFLP markers to allele specific amplicons linked to QTLs governing malting quality in barley. Mol. Breed. 1997;3:457-462. DOI 10.1023/A:1009660921822.

33. Li C.D., Cakir M., Lance R. Genetic improvement of malting quality through conventional breeding and marker-assisted selection. In: Zhang G., Li C. (Eds.). Genetics and Improvement of Barley Malt Quality. Advanced Topics in Science and Technology in China. Berlin; Heidelberg: Springer, 2009.

34. Li C.D., Lance R., Tarr A., Broughton S., Harasymow S., Appels R., Jones M. Improvement of barley malting quality using a gene from Hordeum spontaneum. In: VI Int. Barley Genet. Symp. Brno, Czech Republic, 2004.

35. Marquez-Cedillo L.A., Hayes P.M., Jones B.L., Kleinhofs A., Legge W.G., Rossnagel B.G., Sato K., Ullrich S.E., Wesenberg D.M. QTL analysis of malting quality in barley based on the doubledhaploid progeny of two elite north American cultivars representing different germplasm groups. Theor. Appl. Genet. 2000;101:173-184. DOI 10.1007/s001220051466.

36. Mather D.E., Tinker N.A., LaBerge D.E., Edney M., Jones B.L., Rossnagel B.G., Legge W., Briggs K.G., Irvine R.G., Falk D.E., Kasha K.J. Regions of the genome that affect grain and malt quality in a north American two-row barley cross. Crop Sci. 1997;37:544-554. DOI 10.2135/cropsci1997.0011183X003700020039x.

37. Matthies I.E., Malosetti M., Röder M.S., van Eeuwijk F. Genome-wide association mapping for kernel and malting quality traits using historical European barley records. PLoS One. 2014;9(11):e110046. DOI 10.1371/journal.pone.0110046.

38. Meledina T.V., Prokhorchik I.P., Kuznetsova L.I. Biochemical Processes in Malt Production. St. Peterburg, 2013. (in Russian)

39. Mohammadi M., Endelman J.B., Nair S.S., Chao S., Jones S.S., Muehlbauer G.J., Ullrich S.E., Baik B.J., Wise M.L., Smith K.P. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol. Breed. 2014;34:1229-1243. DOI 10.1007/s11032-014-0112-5.

40. Molina-Cano J., Francesch M., Perez-Vendrell A.M., Ramo T., Voltas J., Brufau J. Genetic and environmental variation in malting and feed quality of barley. J. Cereal Sci. 1997;25:37-47. DOI 10.1007/s00122-015-2481-5.

41. Musalitin G.M., Boradulina V.A., Kuzikeev Zh.V. Barley in the Altai region and the results of breeding. Vestnik Buryatskoy Gosudarstvennoy Sel’skokhozyaystvennoy Akademii im. V.R. Filippova = Bulletin of the Filippov Buryat State Agricultural Academy. 2019; 2(55):29-34. (in Russian)

42. Newton A.C., Flavell A.J., George T.S., Leat P., Mullholland B., Ramsay L., Revoredo-Giha C., Russell J., Steffenson B.J., Swanston J.S., William T.B., Waugh R., Waugh T., White P.J., Bingham I.J. Crops that feed the world 4 barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011;3:141-178. DOI 10.1007/s12571-011-0126-3.

43. Nikolaev P.N., Popolzukhin P.V., Aniskov N.I., Yusova O.A., Safonova I.V. Agrobiological characteristics of the maltinh spring barley cultivar Omskiy 100. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2017;178(4):90-99. DOI 10.30901/2227-8834-2017-4-90-99. (in Russian)

44. Panozzo J.F., Eckermann P., Mather D.E., Moody D.B., Black C.K., Collins H.M., Barr A.R., Lim P.O., Cullis B.R. QTL analysis of malting quality traits in two barley populations. Aust. J. Agric. Res. 2007;58(9):858-866. DOI 10.1071/AR06203.

45. Paris M., Jones M.G.K., Eglinton J.K. Genotyping single nucleotide polymorphisms for selection of barley β-amylase alleles. Plant Mol. Biol. Rep. 2002;20:149-159. DOI 10.1007/BF02799430.

46. Pasam R.K., Sharma R., Malosetti M., Van Eeuwijk F.A., Haseneyer G., Kilian B., Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol. 2012;12(1):16. DOI 10.1186/1471-2229-12-16.

47. Powell W., Thomas W.T.B., Baird E., Lawrence P., Booth A., Harrower B., McNicol J.W., Waugh R. Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity. 1997;79:48-59. DOI 10.1038/hdy.1997.122.

48. Pozniak C.J., Clarke J.M., Clarke F.R. Potential for detection of marker-trait associations in durum wheat using unbalanced, historical phenotypic dataset. Mol. Breed. 2012;30:1537-1550. DOI 10.1007/s11032-012-9737-4.

49. Qi J.C., Chen J.X., Wang J.M., Wu F.B., Cao L.P., Zhang G.P. Protein and hordein fraction content in barley seeds as affected by sowing date and their relations to malting quality. J. Zhejiang Univ. Sci. B. 2005;6(11):1069-1075. DOI 10.1631/jzus.2005.B1069.

50. Rae S.J., Macaulay M., Ramsay L., Leigh F., Matthews D., O’Sullivan D.M., Donini P., Morris P.C., Powell W., Marshall D.F., Waugh R., Thomas W.T.B. Molecular barley breeding. Euphytica. 2007;158:295-303. DOI 10.1007/s10681-006-9166-8.

51. Rafalski J.A. Association genetics in crop improvement. Curr. Opin. Plant Biol. 2010;13:1-7. DOI 10.1016/j.pbi.2009.12.004.

52. Riggs T.J., Kirby E.J.M. Developmental consequences of two-row and six-row ear type in spring barley. J. Agric. Sci. 1978;91:199-205.

53. Schmalenbach I., Pillen K. Detection and verification of malting quality QTLs using wild barley introgression lines. Theor. Appl. Genet. 2009;118:1411-1427. DOI 10.1007/s00122-009-0991-8.

54. Sneller C.H., Mather D.E., Crepieux S. Analytical approaches and population types for finding and utilizing QTL in complex plant populations. Crop Sci. 2009;49:363-380. DOI 10.2135/cropsci2008.07.0420.

55. Stanca A.M., Gianinetti A., Rizza F., Terzi V. Barley: an overview of a versatile cereal grain with many food and feed uses. In: Wrigley C.W., Corke H., Seetharaman K., Faubion J. (Eds.). Encyclopedia of Food Grains. 2nd ed. Oxford: Elsevier, 2016;147-152.

56. Surin N.A., Zobova N.V., Lyahova N.E. The genetic potential of barley in Siberia and its importance for breeding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(2):378-386. (in Russian)

57. Szűcs P., Blake V.C., Bhat P.R., Close T.J., Cuesta-Marcos A., Muehlbauer G.J., Ramsay L.V., Waugh R., Hayes P.M. An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome. 2009;2:134-140. DOI 10.3835/plantgenome2008.01.0005.

58. Thomas W.T.B., Powell W., Swanston J.S., Ellis R.P., Chalmers K.J., Barua U.M., Jack P., Lea V., Forster B.P., Waugh R., Smith D.B. Quantitative trait loci for germination and malting quality characters in a spring barley cross. Crop Sci. 1996;36:265-273. DOI 10.2135/cropsci1996.0011183X003600020009x.

59. Varietal Resources of Grain Fodder Crops in the Nonchernozem Zone of Russia (Catalog). Yekaterinburg: GNU Ural Research Institute of Agriculture Publ., 2010. (in Russian)

60. Vassos E.J., Barr A.R., Eglinton J.K. Genetic conversion of feed barley varieties to malting types. In: Proceedings of the 9th International Barley Genetics Symposium. Czech, 20-26 June, 2004.

61. Wang J., Yang J., Zhang Q., Zhu J., Jia Q., Hua W., Shang Y., Li C., Zhou M. Mapping a major QTL for malt extract of barley from a cross between TX9425×Naso Nijo. Theor. Appl. Genet. 2015;128: 943-952. DOI 10.1007/s00122-015-2481-5.

62. Wenzl P., Carling J., Kudrna D., Jaccoud D., Huttner E., Kleinhofs A., Kilian A. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA. 2004;101:9915-9920. DOI 10.1073/pnas.0401076101.

63. Xu Y., Zhang X., Harasymow S., Westcott S., Zhang W., Li C. Molecular marker-assisted backcrossing breeding: an example to transfer a thermostable β-amylase gene from wild barley. Mol. Breed. 2018; 38:63-72. DOI 10.1007/s11032-018-0828-8.

64. Zale J., Clancy J., Ullrich S., Jones B., Hayes P. Summary of barley malting quality QTLs mapped in various populations. Barley Genet. Newsl. 2000;30:44-54.

65. Zhang W.S., Li X., Liu J.B. Genetic variation of Bmy1 alleles in barley (Hordeum vulgare L.) investigated by CAPS analysis. Theor. Appl. Genet. 2007;114:1039-1050. DOI 10.1007/s00122-006-0497-6.


Review

Views: 1414


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)