Проблемы и возможности изучения пивоваренных признаков ячменя с использованием молекулярно-генетических подходов
https://doi.org/10.18699/VJ21.021
Аннотация
Около одной трети урожая выращиваемого в мире ячменя используется для переработки в солод для обеспечения нужд пивоваренной промышленности. В связи с этим изучение генетической основы пивоваренных признаков и селекция пивоваренных сортов ячменя, адаптивных к условиям их произрастания, актуальны как во всем мире, так и в Российской Федерации, где преобладают выращивание и использование зарубежных солодовых сортов ячменя. К основным параметрам качества солода (искусственно пророщенного и высушенного зерна ячменя) относятся: экстрактивность, диастатическая сила, индекс Кольбаха, вязкость, содержание в зерне белка, β-глюкана, свободного аминного азота и растворимого белка. Большинство этих компонентов находится под контролем локусов количественных признаков (quantitative trait loci, QTL) и подвержено влиянию условий среды, что осложняет их изучение и точную локализацию. Кроме того, фенотипическая оценка пивоваренных признаков – трудоемкий и дорогостоящий процесс. В настоящее время известно более 200 QTL, связанных с пивоваренными параметрами, выявленных с привлечением двуродительских картирующих популяций. Молекулярные маркеры широко применяются как для картирования QTL-локусов, ответственных за пивоваренные качества, так и для выполнения работ по маркер-опосредованной селекции (МОС), что в комбинации с традиционными селекционными подходами дает возможность создавать эффективные стратегии, направленные на ускорение процесса получения новых перспективных генотипов. Тем не менее МОС пивоваренных признаков сталкивается с рядом трудностей, таких как невысокая точность локализации QTL-локусов, их неэффективность при переносе в другую генотипическую среду, сцепленность с нежелательными признаками, что обуславливает необходимость валидации QTL и сцепленных с ними молекулярных маркеров. В обзоре приведены результаты работ по использованию МОС для улучшения пивоваренных качеств ячменя, а также рассматриваются исследования по поиску ассоциаций между генотипом и фенотипом, выполненные с помощью ПГАА-анализа (полногеномный поиск ассоциаций) на основе последних достижений в области высокопроизводительного генотипирования (diversity array technology, DArT и single-nucleotide polymorphism, SNP маркеры).
Об авторах
Н. В. ТрубачееваРоссия
Новосибирск
Л. А. Першина
Россия
Новосибирск
Список литературы
1. Anis’kov N.I., Nikolaev P.N., Popolzukhin P.V., Safonova I.V., Bratseva L.I. A new middle-ripening spring malting barley variety Omskiy 100. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of Altai State Agricultural University. 2016; 4(138):14-19. (in Russian)
2. Ayoub M., Armstrong E., Bridger G., Fortin M.G., Mather D.E. Marker-based selection in barley for a QTL region affecting alpha amylase activity of malt. Crop Sci. 2003;43:556-561.
3. Bamforth C.W. Current perspectives on the role of enzymes in brewing. J. Cereal Sci. 2009;50:353-357. DOI 10.1016/j.jcs.2009.03.001.
4. Beattie A.D., Edney M.J., Scoles G.J., Rossnagel B.G. Association mapping of malting quality data from western Canadian two-row barley cooperative trials. Crop Sci. 2010;50(5):1649. DOI 10.2135/cropsci2009.06.0334.
5. Bond J., Capehart T., Allen E., Kim G. Boutique Brews, Barley, and the Balance Sheet: Changes in Malt Barley Industrial Use Require an Updated Forecasting Approach. Washington, DC: Economic Research Division, United Stated Department of Agriculture, 2015;18-23.
6. Cai S., Yu G., Chen X., Huang Y.C., Jiang X.G., Zhang G.P., Jin X. Grain protein content variation and its association analysis in barley. BMC Plant Biol. 2013;13(35). DOI 10.1186/1471-2229-13-35.
7. Castro A., Cammarota L., Gomez B., Gutierrez L., Hayes P.M., Locatelli A., Motta L., Pieroni S. Genome-wide association mapping of malting quality traits in relevant barley germplasm in Uruguay. In: Zhang G., Li C., Liu X. (Eds.). Advances in Barley Sciences. New York: Springer, 2013;37-46. DOI 10.1007/978-94-007-4682-4_3.
8. Chen J., Dai F., Wei K., Zhang G. Relationship between malt qualities and β-amylase activity and protein content as affected by timing of nitrogen fertilizer application. J. Zhejiang Univ. Sci. B. 2006;7: 79-84. DOI 10.1631/jzus.2006.B0079.
9. Close T.J., Bhat P.R., Lonardi S., Wu Y., Rostoks N., Ramsay L., Druka A., Stein N., Svensson J.T., Wanamaker S., Bozdag S., Roose M.L., Moscou M.J., Chao S., Varshney R.K., Szucs P., Sato K., Hayes P.M., Matthews D.E., Kleinhofs A., Muehlbauer G.J., DeYoung J., Marshall D.F., Madishetty K., Fenton R.D., Condamine P., Graner A., Waugh R. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 2009; 10:582. DOI 10.1186/1471-2164-10-582.
10. Coles G.D., Jamieson P.D., Haslemore R.M. Effect of moisture stress on malting quality in triumph barley. J. Cereal Sci. 1991;14:161-177. DOI 10.1016/S0733-5210.
11. Collins H.M., Panozzo J.F., Logue S.J., Jefferies S.P., Barr A.R. Mapping and validation of chromosome regions associated with high malt extract in barley (Hordeum vulgare L.). Aust. J. Agric. Res. 2003;54:1223-1240. DOI 10.1071/AR02201.
12. Condon F., Gustus C., Rasmusson D., Smith K. Effect of advanced cycle breeding on genetic diversity in barley breeding germplasm. Crop Sci. 2008;48:1027-1036. DOI 10.2135/cropsci2007.07.0415.
13. Coventry S.J., Collins H.M., Barr A.R., Jefferies S.P., Chalmers K.J., Logue S.J., Langridge P. Use of putative QTLs and structural genes in marker assisted selection for diastatic power in malting barley (Hordeum vulgare L.). Aust. J. Agric. Res. 2003;54:1241-1250. DOI 10.1071/AR02193.
14. Cu S.T., March T.J., Stewart S., Degner S., Coventry S., Box A., Stewart D., Skadhauge B., Burton R.A., Fincher G.B., Eglinton J. Genetic analysis of grain and malt quality in an elite barley population. Mol. Breed. 2016;36:129. DOI 10.1007/s11032-016-0554-z.
15. Cullis B.R., Smith A.B., Panozzo J.F., Lim P. Barley malting quality: are we selecting the best? Aust. J. Agric. Res. 2003;54:1261-1275. DOI 10.1071/AR02195.
16. Edney M.J., Mather D.E. Quantitative trait loci affecting germination traits and malt friability in a two-rowed by six rowed barley cross. J. Cereal Sci. 2004;39:283-290. DOI 10.1016/j.jcs.2003.10.008.
17. Elía M., Swanston J.S., Moralejo M., Casas A., Pérez-Vendrell A.M., Ciudad F.J., Thomas W.T.B., Smith P.L., Ullrich S.E., Molina-Cano J.-L. A model of the genetic differences in malting quality between European and north American barley cultivars based on a QTL study of the cross Triumph ×Morex. Plant Breed. 2010;129: 280-290. DOI 10.1111/j.1439-0523.2009.01694.x.
18. Emebiri L.C., Moody D.B., Horsley R., Panozzo J., Read B.J. The genetic control of grain protein content variation in a doubled haploid population derived from a cross between Australian and north American two-rowed barley lines. J. Cereal Sci. 2005;41:107-114. DOI 10.1016/j.jcs.2004.08.012.
19. Erkkilä M.J. Intron III-specific markers for screening of β-amylase alleles in barley cultivars. Plant Mol. Biol. Rep. 1999;17:139-147. DOI 10.1023/A:1007595821379.
20. Fan C., Zhai H., Wang H., Yue Y., Zhang M., Li J., Wen S., Guo G., Zeng Y., Ni Z., You M. Identification of QTLs controlling grain protein concentration using a high-density SNP and SSR linkage map in barley (Hordeum vulgare L.). BMC Plant Biol. 2017;17(1):122. DOI 10.1186/s12870-017-1067-6.
21. Fang Y., Zhang X., Xue D. Genetic analysis and molecular breeding applications of malting quality QTLs in barley. Front. Genet. 2019; 10:352. DOI 10.3389/fgene.2019.00352.
22. Foster A.E., Peterson G.A., Banasik O.J. Heritability of factors affecting malting quality of barley. Crop Sci. 1967;7:611-613. DOI 10.2135/cropsci1967.0011183X000700060016x.
23. Fox G.P., Panozzo J.F., Li C.D., Lance R.C.M., Inkerman P.A., Henry R.J. Molecular basis of barley quality. Aust. J. Agric. Res. 2003; 54:1081-1101. https://doi.org/10.1071/AR02237.
24. Goncharov S.V., Mordovin A.N. Malting barley is a driver of intensification. In: Biologization of Agriculture: Prospects and Real Opportunities. Voronezh, 2019;116-125. (in Russian)
25. Han F., Romagosa I., Ullrich S., Jones B., Hayes P., Wesenberg D. Molecular marker-assisted selection for malting quality traits in barley. Mol. Breed. 1997;3:427-437. DOI 10.1023/A:1009608312385.
26. Hayes P., Castro A., Marquez-Cedillo L., Corey A., Henson C., Jones B., Kling J., Mather D., Matus I., Rossi C. A summary of published barley. QTL Reports. 2000. http://www.barleyworldorg/northamericanbarley/qtlsummaryphp.
27. Hirota N., Kaneko T., Kuroda H., Kaneda H., Takashio M., Ito K., Takeda K. Characterization of lipoxygenase-1 null mutants in barley. Theor. Appl. Genet. 2005;111(8):1580-1584. DOI 10.1007/s00122-005-0088-y.
28. Hirota N., Kuroda H., Takoi K., Kaneko T., Kaneda H., Yoshida I., Takashio M., Ito K., Takeda K. Brewing performance of malted lipoxygenase-1 null barley and effect on the flavor stability of beer. Cereal Chem. 2006;83(3):250-254. DOI 10.1094/CC-83-0250.
29. Igartua E., Edney M., Rossnagel B.G., Spaner D., Legge W.G., Scoles G.J., Eckstein P.E., Penner G.A., Tinker N.A., Briggs K.G., Falk D.E., Mather D.E. Marker-based selection of QTL affecting grain and malt quality in two-row barley. Crop Sci. 2000;40:1426-1433. DOI 10.2135/cropsci2000.4051426x.
30. Iimure T., Kihara M., Ichikawa S., Ito K., Takeda K., Sato K. Development of DNA markers associated with beer foam stability for barley breeding. Theor. Appl. Genet. 2011;122:199-210. DOI 10.1007/s00122-010-1436-0.
31. Laidò G., Barabaschi D., Tondelli A., Gianinetti A., Stanca A.M., Li Destri Nicosia O., NDi F., Francia E., Pecchioni N. QTL alleles from a winter feed type can improve malting quality in barley. Plant Breed. 2009;128:598-605. DOI 10.1111/j.1439-0523.2009.01636.x.
32. Lee S.J., Penner G.A. The conversion of RFLP markers to allele specific amplicons linked to QTLs governing malting quality in barley. Mol. Breed. 1997;3:457-462. DOI 10.1023/A:1009660921822.
33. Li C.D., Cakir M., Lance R. Genetic improvement of malting quality through conventional breeding and marker-assisted selection. In: Zhang G., Li C. (Eds.). Genetics and Improvement of Barley Malt Quality. Advanced Topics in Science and Technology in China. Berlin; Heidelberg: Springer, 2009.
34. Li C.D., Lance R., Tarr A., Broughton S., Harasymow S., Appels R., Jones M. Improvement of barley malting quality using a gene from Hordeum spontaneum. In: VI Int. Barley Genet. Symp. Brno, Czech Republic, 2004.
35. Marquez-Cedillo L.A., Hayes P.M., Jones B.L., Kleinhofs A., Legge W.G., Rossnagel B.G., Sato K., Ullrich S.E., Wesenberg D.M. QTL analysis of malting quality in barley based on the doubledhaploid progeny of two elite north American cultivars representing different germplasm groups. Theor. Appl. Genet. 2000;101:173-184. DOI 10.1007/s001220051466.
36. Mather D.E., Tinker N.A., LaBerge D.E., Edney M., Jones B.L., Rossnagel B.G., Legge W., Briggs K.G., Irvine R.G., Falk D.E., Kasha K.J. Regions of the genome that affect grain and malt quality in a north American two-row barley cross. Crop Sci. 1997;37:544-554. DOI 10.2135/cropsci1997.0011183X003700020039x.
37. Matthies I.E., Malosetti M., Röder M.S., van Eeuwijk F. Genome-wide association mapping for kernel and malting quality traits using historical European barley records. PLoS One. 2014;9(11):e110046. DOI 10.1371/journal.pone.0110046.
38. Meledina T.V., Prokhorchik I.P., Kuznetsova L.I. Biochemical Processes in Malt Production. St. Peterburg, 2013. (in Russian)
39. Mohammadi M., Endelman J.B., Nair S.S., Chao S., Jones S.S., Muehlbauer G.J., Ullrich S.E., Baik B.J., Wise M.L., Smith K.P. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol. Breed. 2014;34:1229-1243. DOI 10.1007/s11032-014-0112-5.
40. Molina-Cano J., Francesch M., Perez-Vendrell A.M., Ramo T., Voltas J., Brufau J. Genetic and environmental variation in malting and feed quality of barley. J. Cereal Sci. 1997;25:37-47. DOI 10.1007/s00122-015-2481-5.
41. Musalitin G.M., Boradulina V.A., Kuzikeev Zh.V. Barley in the Altai region and the results of breeding. Vestnik Buryatskoy Gosudarstvennoy Sel’skokhozyaystvennoy Akademii im. V.R. Filippova = Bulletin of the Filippov Buryat State Agricultural Academy. 2019; 2(55):29-34. (in Russian)
42. Newton A.C., Flavell A.J., George T.S., Leat P., Mullholland B., Ramsay L., Revoredo-Giha C., Russell J., Steffenson B.J., Swanston J.S., William T.B., Waugh R., Waugh T., White P.J., Bingham I.J. Crops that feed the world 4 barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur. 2011;3:141-178. DOI 10.1007/s12571-011-0126-3.
43. Nikolaev P.N., Popolzukhin P.V., Aniskov N.I., Yusova O.A., Safonova I.V. Agrobiological characteristics of the maltinh spring barley cultivar Omskiy 100. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2017;178(4):90-99. DOI 10.30901/2227-8834-2017-4-90-99. (in Russian)
44. Panozzo J.F., Eckermann P., Mather D.E., Moody D.B., Black C.K., Collins H.M., Barr A.R., Lim P.O., Cullis B.R. QTL analysis of malting quality traits in two barley populations. Aust. J. Agric. Res. 2007;58(9):858-866. DOI 10.1071/AR06203.
45. Paris M., Jones M.G.K., Eglinton J.K. Genotyping single nucleotide polymorphisms for selection of barley β-amylase alleles. Plant Mol. Biol. Rep. 2002;20:149-159. DOI 10.1007/BF02799430.
46. Pasam R.K., Sharma R., Malosetti M., Van Eeuwijk F.A., Haseneyer G., Kilian B., Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol. 2012;12(1):16. DOI 10.1186/1471-2229-12-16.
47. Powell W., Thomas W.T.B., Baird E., Lawrence P., Booth A., Harrower B., McNicol J.W., Waugh R. Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity. 1997;79:48-59. DOI 10.1038/hdy.1997.122.
48. Pozniak C.J., Clarke J.M., Clarke F.R. Potential for detection of marker-trait associations in durum wheat using unbalanced, historical phenotypic dataset. Mol. Breed. 2012;30:1537-1550. DOI 10.1007/s11032-012-9737-4.
49. Qi J.C., Chen J.X., Wang J.M., Wu F.B., Cao L.P., Zhang G.P. Protein and hordein fraction content in barley seeds as affected by sowing date and their relations to malting quality. J. Zhejiang Univ. Sci. B. 2005;6(11):1069-1075. DOI 10.1631/jzus.2005.B1069.
50. Rae S.J., Macaulay M., Ramsay L., Leigh F., Matthews D., O’Sullivan D.M., Donini P., Morris P.C., Powell W., Marshall D.F., Waugh R., Thomas W.T.B. Molecular barley breeding. Euphytica. 2007;158:295-303. DOI 10.1007/s10681-006-9166-8.
51. Rafalski J.A. Association genetics in crop improvement. Curr. Opin. Plant Biol. 2010;13:1-7. DOI 10.1016/j.pbi.2009.12.004.
52. Riggs T.J., Kirby E.J.M. Developmental consequences of two-row and six-row ear type in spring barley. J. Agric. Sci. 1978;91:199-205.
53. Schmalenbach I., Pillen K. Detection and verification of malting quality QTLs using wild barley introgression lines. Theor. Appl. Genet. 2009;118:1411-1427. DOI 10.1007/s00122-009-0991-8.
54. Sneller C.H., Mather D.E., Crepieux S. Analytical approaches and population types for finding and utilizing QTL in complex plant populations. Crop Sci. 2009;49:363-380. DOI 10.2135/cropsci2008.07.0420.
55. Stanca A.M., Gianinetti A., Rizza F., Terzi V. Barley: an overview of a versatile cereal grain with many food and feed uses. In: Wrigley C.W., Corke H., Seetharaman K., Faubion J. (Eds.). Encyclopedia of Food Grains. 2nd ed. Oxford: Elsevier, 2016;147-152.
56. Surin N.A., Zobova N.V., Lyahova N.E. The genetic potential of barley in Siberia and its importance for breeding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18(2):378-386. (in Russian)
57. Szűcs P., Blake V.C., Bhat P.R., Close T.J., Cuesta-Marcos A., Muehlbauer G.J., Ramsay L.V., Waugh R., Hayes P.M. An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome. 2009;2:134-140. DOI 10.3835/plantgenome2008.01.0005.
58. Thomas W.T.B., Powell W., Swanston J.S., Ellis R.P., Chalmers K.J., Barua U.M., Jack P., Lea V., Forster B.P., Waugh R., Smith D.B. Quantitative trait loci for germination and malting quality characters in a spring barley cross. Crop Sci. 1996;36:265-273. DOI 10.2135/cropsci1996.0011183X003600020009x.
59. Varietal Resources of Grain Fodder Crops in the Nonchernozem Zone of Russia (Catalog). Yekaterinburg: GNU Ural Research Institute of Agriculture Publ., 2010. (in Russian)
60. Vassos E.J., Barr A.R., Eglinton J.K. Genetic conversion of feed barley varieties to malting types. In: Proceedings of the 9th International Barley Genetics Symposium. Czech, 20-26 June, 2004.
61. Wang J., Yang J., Zhang Q., Zhu J., Jia Q., Hua W., Shang Y., Li C., Zhou M. Mapping a major QTL for malt extract of barley from a cross between TX9425×Naso Nijo. Theor. Appl. Genet. 2015;128: 943-952. DOI 10.1007/s00122-015-2481-5.
62. Wenzl P., Carling J., Kudrna D., Jaccoud D., Huttner E., Kleinhofs A., Kilian A. Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc. Natl. Acad. Sci. USA. 2004;101:9915-9920. DOI 10.1073/pnas.0401076101.
63. Xu Y., Zhang X., Harasymow S., Westcott S., Zhang W., Li C. Molecular marker-assisted backcrossing breeding: an example to transfer a thermostable β-amylase gene from wild barley. Mol. Breed. 2018; 38:63-72. DOI 10.1007/s11032-018-0828-8.
64. Zale J., Clancy J., Ullrich S., Jones B., Hayes P. Summary of barley malting quality QTLs mapped in various populations. Barley Genet. Newsl. 2000;30:44-54.
65. Zhang W.S., Li X., Liu J.B. Genetic variation of Bmy1 alleles in barley (Hordeum vulgare L.) investigated by CAPS analysis. Theor. Appl. Genet. 2007;114:1039-1050. DOI 10.1007/s00122-006-0497-6.