Следы отбора и гены-кандидаты адаптации к экстремальным факторам среды в геномах турано-монгольских пород крупного рогатого скота
https://doi.org/10.18699/VJ21.023
Аннотация
Изменения, происходящие в окружающей среде, заставляют популяции организмов адаптироваться к новым условиям либо за счет фенотипической пластичности, либо за счет генетических или эпигенетических изменений. Следы отбора, такие как специфические изменения частот аллелей и гаплотипов, снижение или повышение генетического разнообразия, помогают выявить изменения генома крупного рогатого скота в ответ на искусственный и естественный отбор, а также локусы и варианты, непосредственно влияющие на адаптивные и экономически важные признаки. Достижения генетики и биотехнологии дают возможность быстрого переноса уникальных генетических вариантов, возникших у местных пород крупного рогатого скота в процессе адаптации к локальной среде обитания, в геномы интернациональных высокопроизводительных пород с целью сохранения их выдающихся свойств в новых условиях обитания. Возможно и использование методов геномной селекции для повышения частот адаптивных аллелей у интернациональных пород. В обзоре рассмотрены недавние работы по истории происхождения и эволюции турано-монгольских пород крупного рогатого скота, адаптации турано-монгольского скота к экстремальным условиям среды. Сделано обобщение имеющихся сведений о потенциальных генах-кандидатах адаптации в геномах турано-монгольских пород, включая гены устойчивости к холоду, гены иммунного ответа и гены адаптации к высокогорью. Авторы приходят к выводу, что имеющиеся данные литературы не позволяют отдать предпочтение одному из двух возможных сценариев происхождения турано-монгольских пород – в результате доместикации дикого тура на территории Восточной Азии или вследствие миграции тауринной протопопуляции из Ближнего Востока. Турано-монгольским породам свойственна высокая адаптация к экстремальным климатическим условиям (холод, жара и недостаток кислорода в горах) и паразитам (гнус, клещи, бактериальные и вирусные инфекции). В результате высокопроизводительного генотипирования и секвенирования геномов и транскриптомов представителей этих пород в последнее время были выявлены перспективные гены-кандидаты и генетические варианты, участвующие в адаптации к факторам внешней среды.
Ключевые слова
Об авторах
Н. С. ЮдинРоссия
Новосибирск
А. А. Юрченко
Россия
Новосибирск
Д. М. Ларкин
Россия
Новосибирск;
Лондон
Список литературы
1. Генджиева О.Б., Сулимова Г.Е. Анализ взаимоотношений между породами крупного рогатого скота тураномонгольской группы на основе ДНКполиморфизма. Актуальные вопросы ветеринарной биологии. 2012;2:1416.
2. Дунин И.М., Данкверт А.Г. (ред.). Справочник пород и типов сельскохозяйственных животных, разводимых в Российской Федерации. М.: ВНИИплем, 2013.
3. Лазебная И.В., Перчун А.В., Лхасаранов Б.Б., Лазебный О.Е., Столповский Ю.А. Генетическая изменчивость бурятской и алтайской пород крупного рогатого скота, оцененная на основе анализа полиморфизма генов GH1, GHR и PRL. Вавиловский журнал генетики и селекции. 2018;22(6):734741. https://doi.org/10.18699/VJ18.417.
4. Моисеева И.Г., Уханов С.В., Столповский Ю.А., Сулимова Г.Е., Каштанов С.Н. Генофонды сельскохозяйственных животных. Генетические ресурсы животноводства России. М.: Наука, 2006.
5. Achilli A., Bonfiglio S., Olivieri A., Malusà A., Pala M., Hooshiar Kashani B., Perego U.A., AjmoneMarsan P., Liotta L., Semino O., Bandelt H.J., Ferretti L., Torroni A. The multifaceted origin of taurine cattle reflected by the mitochondrial genome. PLoS One. 2009; 4(6):e5753. https://doi.org/10.1371/journal.pone.0005753.
6. Achilli A., Olivieri A., Pellecchia M., Uboldi C., Colli L., AlZahery N., Accetturo M., Pala M., Hooshiar Kashani B., Perego U.A., Battaglia V., Fornarino S., Kalamati J., Houshmand M., Negrini R., Semino O., Richards M., Macaulay V., Ferretti L., Bandelt H.J., AjmoneMarsan P., Torroni A. Mitochondrial genomes of extinct aurochs survive in domestic cattle. Curr. Biol. 2008;18(4):R157158. https://doi.org/10.1016/j.cub.2008.01.019.
7. Ai H., Fang X., Yang B., Huang Z., Chen H., Mao L., Zhang F., Zhang L., Cui L., He W., Yang J., Yao X., Zhou L., Han L., Li J., Sun S., Xie X., Lai B., Su Y., Lu Y., Yang H., Huang T., Deng W., Nielsen R., Ren J., Huang L. Adaptation and possible ancient interspecies introgression in pigs identified by wholegenome sequencing. Nat. Genet. 2015;47(3):217225. https://doi.org/10.1038/ng.3199.
8. Alexander D.H., Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics. 2011; 12:246. https://doi.org/10.1186/1471210512246.
9. Bartelt A., Bruns O.T., Reimer R., Hohenberg H., Ittrich H., Peldschus K., Kaul M.G., Tromsdorf U.I., Weller H., Waurisch C., Eychmüller A., Gordts P.L., Rinninger F., Bruegelmann K., Freund B., Nielsen P., Merkel M., Heeren J. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 2011;17(2):200205. https://doi.org/10.1038/nm.2297.
10. Belgnaoui S.M., Paz S., Hiscott J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr. Opin. Immunol. 2011;23(5):564572. https://doi.org/10.1016/j.coi.2011.08.001.
11. Bharti D., Kumar A., Mahla R.S., Kumar S., Ingle H., Shankar H., Joshi B., Raut A.A., Kumar H. The role of TLR9 polymorphism in susceptibility to pulmonary tuberculosis. Immunogenetics. 2014; 66(12):675681. https://doi.org/10.1007/s0025101408061.
12. Bigham A., Bauchet M., Pinto D., Mao X., Akey J.M., Mei R., Scherer S.W., Julian C.G., Wilson M.J., López Herráez D., Brutsaert T.,Parra E.J., Moore L.G., Shriver M.D. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 2010;6(9):e1001116. https://doi.org/10.1371/journal.pgen.1001116.
13. Boitard S., Boussaha M., Capitan A., Rocha D., Servin B. Uncovering adaptation from sequence data: lessons from genome resequencing of four cattle breeds. Genetics. 2016;203(1):433450. https://doi.org/10.1534/genetics.115.181594.
14. Bollongino R., Burger J., Powell A., Mashkour M., Vigne J.D., Thomas M.G. Modern taurine cattle descended from small number of neareastern founders. Mol. Biol. Evol. 2012;29(9):21012104. https://doi.org/10.1093/molbev/mss092.
15. Bradley D.G., Magee D.A. Genetics and the origins of domestic cattle. In: Zeder M.A., Bradley D.G., Emshwiller E., Smith B.D. (Eds.). Documenting Domestication: New Genetic and Archaeological Paradigms. Berkeley: Univ. of California Press, 2006;317328.
16. CaetanoAnolles K., Kim K., Kwak W., Sung S., Kim H., Choi B.H., Lim D. Genome sequencing and protein domain annotations of Korean Hanwoo cattle identify Hanwoospecific immunityrelated and other novel genes. BMC Genet. 2018;19(1):37. https://doi.org/10.1186/s128630180623x.
17. Cai X., Chen H., Wang S., Xue K., Lei C. Polymorphisms of two Y chromosome microsatellites in Chinese cattle. Genet. Sel. Evol. 2006;38(5):525534.
18. Cardona A., Pagani L., Antao T., Lawson D.J., Eichstaedt C.A., Yngvadottir B., Shwe M.T., Wee J., Romero I.G., Raj S., Metspalu M., Villems R., Willerslev E., TylerSmith C., Malyarchuk B.A., Derenko M.V., Kivisild T. Genomewide analysis of cold adaptation in indigenous Siberian populations. PLoS One. 2014;9(5):e98076. https://doi.org/10.1371/journal.pone.0098076.
19. Chan E.K., Nagaraj S.H., Reverter A. The evolution of tropical adaptation: comparing taurine and zebu cattle. Anim. Genet. 2010;41(5): 467477. https://doi.org/10.1111/j.13652052.2010.02053.x.
20. Chen H.H., Tsai L.J., Lee K.R., Chen Y.M., Hung W.T., Chen D.Y. Genetic association of complement component 2 polymorphism with systemic lupus erythematosus. Tissue Antigens. 2015;86(2): 122133. https://doi.org/10.1111/tan.12602.
21. Chen N., Cai Y., Chen Q., Li R., Wang K., Huang Y., Hu S., Huang S., Zhang H., Zheng Z., Song W., Ma Z., Ma Y., Dang R., Zhang Z., Xu L., Jia Y., Liu S., Yue X., Deng W., Zhang X., Sun Z., Lan X., Han J., Chen H., Bradley D.G., Jiang Y., Lei C. Wholegenome resequencing reveals worldwide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 2018a; 9(1):2337. https://doi.org/10.1038/s41467018047370.
22. Chen N., Huang J., Zulfiqar A., Li R., Xi Y., Zhang M., Dang R., Lan X., Chen H., Ma Y., Lei C. Population structure and ancestry of Qinchuan cattle. Anim. Genet. 2018b;49(3):246248. https://doi.org/10.1111/age.12658.
23. Chen Y., Zeng B., Shi P., Xiao H., Chen S. Comparative analysis of the liver and spleen transcriptomes between Holstein and Yunnan humped cattle. Animals (Basel). 2019;9(8):527. https://doi.org/10.3390/ani9080527.
24. Choy Y.H., Seo J.H., Park B., Lee S., Choi J., Jung K., Kong H. Studies on genetic diversity and phylogenetic relationships of Chikso (Korea native brindle cattle) using the microsatellite marker. J. Life Sci. 2015;25:624630. https://doi.org/10.5352/JLS.2015.25.6.624.
25. Decker J.E., McKay S.D., Rolf M.M., Kim J., Molina Alcalá A., Sonstegard T.S., Hanotte O., Götherström A., Seabury C.M., Praharani L., Babar M.E., Correia de Almeida Regitano L., Yildiz M.A., Heaton M.P., Liu W.S., Lei C.Z., Reecy J.M., SaifUrRehman M., Schnabel R.D., Taylor J.F. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 2014; 10(3):e1004254. https://doi.org/10.1371/journal.pgen.1004254.
26. Dho S.H., Lim J.C., Kim L.K. Beyond the role of CD55 as a complement component. Immune Netw. 2018;18(1):e11. https://doi.org/10.4110/in.2018.18.e11.
27. Dmitriev N.G., Ernst L.K. (Eds.). Animal Genetics Resources of the USSR. Rome, Italy: Food and Agriculture Organization of the United Nations, 1989. Available at http://www.fao.org/3/ah759e/ah759e00.htm. Retrieved at October 2, 2019.
28. Ermert D., Blom A.M. C4bbinding protein: the good, the bad and the deadly. Novel functions of an old friend. Immunol. Lett. 2016;169: 8292. https://doi.org/10.1016/j.imlet.2015.11.014.
29. Felius M., Koolmees P.A., Theunissen B., European Cattle Genetic Diversity Consortium, Lenstra J.A. On the breeds of cattle - historic and current classifications. Diversity. 2011;3:660692. https://doi.org/10.3390/d3040660.
30. Ferreira J.V., Fôfo H., Bejarano E., Bento C.F., Ramalho J.S., Girão H., Pereira P. STUB1/CHIP is required for HIF1A degradation by chaperonemediated autophagy. Autophagy. 2013;9(9):13491366. https://doi.org/10.4161/auto.25190.
31. Gao Y., Gautier M., Ding X., Zhang H., Wang Y., Wang X., Faruque M.O., Li J., Ye S., Gou X., Han J., Lenstra J.A., Zhang Y. Species composition and environmental adaptation of indigenous Chinese cattle. Sci. Rep. 2017;7(1):16196. https://doi.org/10.1038/s41598017164387.
32. Garvie C.W., Stagno J.R., Reid S., Singh A., Harrington E., Boss J.M. Characterization of the RFX complex and the RFX5(L66A) mutant: implications for the regulation of MHC class II gene expression. Biochemistry. 2007;46(6):15971611.
33. Gautier M., MoazamiGoudarzi K., Levéziel H., Parinello H., Grohs C., Rialle S., Kowalczyk R., Flori L. Deciphering the wisent demographic and adaptive histories from individual wholegenome sequences. Mol. Biol. Evol. 2016;33(11):28012814. https://doi.org/10.1093/molbev/msw144.
34. Glatz J.F., Luiken J.J., Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol. Rev. 2010;90(1):367417. https://doi.org/10.1152/physrev.00003.2009.
35. Gotoh T., Nishimura T., Kuchida K., Mannen H. The Japanese Wagyu beef industry: current situation and future prospects - a review. Asian-Australas. J. Anim. Sci. 2018;31(7):933950. https://doi.org/10.5713/ajas.18.0333.
36. Higgins C.A., Petukhova L., Harel S., Ho Y.Y., Drill E., Shapiro L., Wajid M., Christiano A.M. FGF5 is a crucial regulator of hair length in humans. Proc. Natl. Acad. Sci. USA. 2014;111(29):1064810653. https://doi.org/10.1073/pnas.1402862111.
37. Hou Q., Huang J., Ju Z., Li Q., Li L., Wang C., Sun T., Wang L., Hou M., Hang S., Zhong J. Identification of splice variants, targeted microRNAs and functional single nucleotide polymorphisms of the BOLA-DQA2 gene in dairy cattle. DNA Cell Biol. 2012;31(5):739744. https://doi.org/10.1089/dna.2011.1402.
38. Huai Q., Zhiyong J., Zhijie C. A survey of cattle production in China. World Review Animal. FAO. 1993;76:1218.
39. Islam F., Gopalan V., Lam A.K. RETREG1 (FAM134B): a new player in human diseases: 15 years after the discovery in cancer. J. Cell. Physiol. 2018;233(6):44794489. https://doi.org/10.1002/jcp.26384.
40. IsoTouru T., Tapio M., Vilkki J., Kiseleva T., Ammosov I., Ivanova Z., Popov R., Ozerov M., Kantanen J. Genetic diversity and genomic signatures of selection among cattle breeds from Siberia, eastern and northern Europe. Anim. Genet. 2016;47(6):647657. https://doi.org/10.1111/age.12473.
41. Jeong J., Kwon E.G., Im S.K., Seo K.S., Baik M. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J. Anim. Sci. 2012;90(6):20442053. https://doi.org/10.2527/jas.20114753.
42. Jo C., Cho S.H., Chang J., Nam K.C. Keys to production and processing of Hanwoo beef: a perspective of tradition and science. Anim. Front. 2012;2(4):3238. https://doi.org/10.2527/af.20120060.
43. Johnson H., Scorrano L., Korsmeyer S.J., Ley T.J. Cell death induced by granzyme C. Blood. 2003;101(8):30933101.
44. Kaempfer R., Arad G., Levy R., Hillman D., Nasie I., Rotfogel Z. CD28: direct and critical receptor for superantigen toxins. Toxins (Basel). 2013;5(9):15311542. https://doi.org/10.3390/toxins5091531.
45. Kantanen J., Edwards C.J., Bradley D.G., Viinalass H., Thessler S., Ivanova Z., Kiselyova T., Cinkulov M., Popov R., Stojanović S., Ammosov I., Vilkki J. Maternal and paternal genealogy of Eurasian taurine cattle (Bos taurus). Heredity. 2009;103(5):404415. https://doi.org/10.1038/hdy.2009.68.
46. Kantanen J., Lovendahl P., Strandberg E., Eythorsdottir E., Li M.H., KettunenPraebel A., Berg P., Meuwissen T. Utilization of farm animal genetic resources in a changing agroecological environment in the Nordic countries. Front. Genet. 2015;6:52. https://doi.org/10.3389/fgene.2015.00052.
47. Kasanmoentalib E.S., Valls Seron M., Ferwerda B., Tanck M.W., Zwinderman A.H., Baas F., van der Ende A., Schwaeble W.J., Brouwer M.C., van de Beek D. Mannosebinding lectinassociated serine protease 2 (MASP2) contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J. Neuroinflammation. 2017;14(1):2. https://doi.org/10.1186/s1297401607709.
48. KawaharaMiki R., Tsuda K., Shiwa Y., AraiKichise Y., Matsumoto T., Kanesaki Y., Oda S., Ebihara S., Yajima S., Yoshikawa H., Kono T. Wholegenome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle KuchinoshimaUshi. BMC Genom. 2011;12:103. https://doi.org/10.1186/1471216412103.
49. Kiermayer C., Northrup E., Schrewe A., Walch A., de Angelis M.H., Schoensiegel F., Zischka H., Prehn C., Adamski J., Bekeredjian R., Ivandic B., Kupatt C., Brielmeier M. Heartspecific knockout of the mitochondrial thioredoxin reductase (Txnrd2) induces metabolic and contractile dysfunction in the aging myocardium. J. Am. Heart Assoc. 2015;4(7):e002153. https://doi.org/10.1161/JAHA.115.002153.
50. Kurth I., Pamminger T., Hennings J.C., Soehendra D., Huebner A.K., Rotthier A., Baets J., Senderek J., Topaloglu H., Farrell S.A., Nürnberg G., Nürnberg P., De Jonghe P., Gal A., Kaether C., Timmerman V., Hübner C.A. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet. 2009;41(11):11791181. https://doi.org/10.1038/ng.464.
51. KussDuerkop S.K., KeestraGounder A.M. NOD1 and NOD2 activation by diverse stimuli: a possible role for sensing pathogeninduced endoplasmic reticulum stress. Infect. Immun. 2020;88:e0089819. https://doi.org/10.1128/IAI.0089819.
52. Lai S.J., Liu Y.P., Liu Y.X., Li X.W., Yao Y.G. Genetic diversity and origin of Chinese cattle revealed by mtDNA Dloop sequence variation. Mol. Phylogenet. Evol. 2006;38(1):146154.
53. Larson G., Burger J. A population genetics view of animal domestication. Trends Genet. 2013;29(4):197205. https://doi.org/10.1016/j.tig.2013.01.003.
54. Lee S.H., Park B.H., Sharma A., Dang C.G., Lee S.S., Choi T.J., Choy Y.H., Kim H.C., Jeon K.J., Kim S.D., Yeon S.H., Park S.B., Kang H.S. Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J. Anim. Sci. Technol. 2014;56:2. https://doi.org/10.1186/20550391562.
55. Lee T., Cho S., Seo K.S., Chang J., Kim H., Yoon D. Genetic variants and signatures of selective sweep of Hanwoo population (Korean native cattle). BMB Rep. 2013;46(7):346351.
56. Li M.H., Kantanen J. Genetic structure of Eurasian cattle (Bos taurus) based on microsatellites: clarification for their breed classification. Anim. Genet. 2010;41(2):150158. https://doi.org/10.1111/j.13652052.2009.01980.x.
57. Li M.H., Tapio I., Vilkki J., Ivanova Z., Kiselyova T., Marzanov N., Cinkulov M., Stojanovic S., Ammosov I., Popov R., Kantanen J. The genetic structure of cattle populations (Bos taurus) in northern Eurasia and the neighbouring Near Eastern regions: implications for breeding strategies and conservation. Mol. Ecol. 2007;16(18):38393853.
58. Li Y., Tran Q., Shrestha R., Piao L., Park S., Park J., Park J. LETM1 is required for mitochondrial homeostasis and cellular viability (review). Mol. Med. Rep. 2019;19(5):33673375. https://doi.org/10.3892/mmr.2019.10041.
59. Librado P., Der Sarkissian C., Ermini L., Schubert M., Jónsson H., Albrechtsen A., Fumagalli M., Yang M.A., Gamba C., SeguinOrlando A., Mortensen C.D., Petersen B., Hoover C.A., LorenteGaldos B., Nedoluzhko A., Boulygina E., Tsygankova S., Neuditschko M., Jagannathan V., Thèves C., Alfarhan A.H., Alquraishi S.A., AlRasheid K.A., SicheritzPonten T., Popov R., Grigoriev S., Alekseev A.N., Rubin E.M., McCue M., Rieder S., Leeb T., Tikhonov A., Crubézy E., Slatkin M., MarquesBonet T., Nielsen R., Willerslev E., Kantanen J., Prokhortchouk E., Orlando L. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl. Acad. Sci. USA. 2015; 112(50):E6889E6897. https://doi.org/10.1073/pnas.1513696112.
60. Liu G.E., Bickhart D.M. Copy number variation in the cattle genome. Funct. Integr. Genomics. 2012;12(4):609624. https://doi.org/10.1007/s1014201202899.
61. Lu P., Brunson K., Yuan J., Li Z. Zooarchaeological and genetic evidence for the origins of domestic cattle in ancient China. Asian Perspect. 2017;56:92120. https://doi.org/10.1353/asi.2017.0003.
62. Mannen H., Kohno M., Nagata Y., Tsuji S., Bradley D.G., Yeo J.S., Nyamsamba D., Zagdsuren Y., Yokohama M., Nomura K., Amano T. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol. Phylogenet. Evol. 2004; 32(2):539544.
63. Mei C., Junjvlieke Z., Raza S.H.A., Wang H., Cheng G., Zhao C., Zhu W., Zan L. Copy number variation detection in Chinese indigenous cattle by whole genome sequencing. Genomics. Available online 2019. Publ. 2020;112(1):831836. https://doi.org/10.1016/j.ygeno.2019.05.023.
64. Mei C., Wang H., Zhu W., Wang H., Cheng G., Qu K., Guang X., Li A., Zhao C., Yang W., Wang C., Xin Y., Zan L. Wholegenome sequencing of the endangered bovine species Gayal (Bos frontalis) provides new insights into its genetic features. Sci. Rep. 2016;6:19787. https://doi.org/10.1038/srep19787.
65. Motwani M., Pesiridis S., Fitzgerald K.A. DNA sensing by the cGASSTING pathway in health and disease. Nat. Rev. Genet. 2019; 20(11):657674. https://doi.org/10.1038/s4157601901511.
66. Mukherjee S., Huda S., Sinha Babu S.P. Tolllike receptor polymorphism in host immune response to infectious diseases: a review. Scand. J. Immunol. 2019;90(1):e12771. https://doi.org/10.1111/sji.12771.
67. Mustafa H., Khan W., Kuthu Z., EuiSoo K., Ajmal A., Javed K., Pasha T., Ali A., Javed M.T., Sonstegard T.S. Genomewide survey of selection signatures in Pakistani cattle breeds. Pak. Vet. J. 2018;38(2):214218. https://doi.org/10.29261/pakvetj/2018.051.
68. Niture S., Moore J., Kumar D. TNFAIP8: inflammation, immunity and human diseases. J. Cell Immunol. 2019;1(2):2934.
69. Pautasso M. Ten simple rules for writing a literature review. PLoS Comput. Biol. 2013;9(7):e1003149. https://doi.org/10.1371/journal.pcbi.1003149.
70. Peilieu С. Livestock Breeds of China (FAO Animal Production and Health Paper 46). Rome: Food and Agriculture Organization of the United Nations, 1984. Available at http://www.fao.org/3/x6549e/x6549e00.pdf. Retrieved on April 10, 2020.
71. Piao L., Li Y., Kim S.J., Byun H.S., Huang S.M., Hwang S.K., Yang K.J., Park K.A., Won M., Hong J., Hur G.M., Seok J.H., Shong M., Cho M.H., Brazil D.P., Hemmings B.A., Park J. Association of LETM1 and MRPL36 contributes to the regulation of mitochondrial ATP production and necrotic cell death. Cancer Res. 2009;69(8):33973404. https://doi.org/10.1158/00085472.CAN083235.
72. Pokharel K., Weldenegodguad M., Popov R., Honkatukia M., Huuki H., Lindeberg H., Peippo J., Reilas T., Zarovnyaev S., Kantanen J. Whole blood transcriptome analysis reveals footprints of cattle adaptation to subarctic conditions. Anim. Genet. 2019;50(3):217227. https://doi.org/10.1111/age.12783.
73. Porter V., Alderson L., Hall S.J.G., Sponenberg D.P. (Eds.) Mason’s World Encyclopedia of Livestock Breeds and Breeding. Wallingford, UK: CABI Publ., 2016.
74. PortoNeto L.R., Lee S.H., Sonstegard T.S., Van Tassell C.P., Lee H.K., Gibson J.P., Gondro C. Genomewide detection of signatures of selection in Korean Hanwoo cattle. Anim. Genet. 2014;45(2):180190. https://doi.org/10.1111/age.12119.
75. Putri M., Syamsunarno M.R., Iso T., Yamaguchi A., Hanaoka H., Sunaga H., Koitabashi N., Matsui H., Yamazaki C., Kameo S., Tsushima Y., Yokoyama T., Koyama H., Abumrad N.A., Kurabayashi M. CD36 is indispensable for thermogenesis under conditions of fasting and cold stress. Biochem. Biophys. Res. Commun. 2015;457(4):520525. https://doi.org/10.1016/j.bbrc.2014.12.124.
76. Qiu Q., Zhang G., Ma T., Qian W., Wang J., Ye Z., Cao C., Hu Q., Kim J., Larkin D.M., Auvil L., Capitanu B., Ma J., Lewin H.A., Qian X., Lang Y., Zhou R., Wang L., Wang K., Xia J., Liao S., Pan S., Lu X., Hou H., Wang Y., Zang X., Yin Y., Ma H., Zhang J., Wang Z., Zhang Y., Zhang D., Yonezawa T., Hasegawa M., Zhong Y., Liu W., Zhang Y., Huang Z., Zhang S., Long R., Yang H., Wang J., Lenstra J.A., Cooper D.N., Wu Y., Wang J., Shi P., Wang J., Liu J. The yak genome and adaptation to life at high altitude. Nat. Genet. 2012; 44(8):946949. https://doi.org/10.1038/ng.2343.
77. Quarta S., Mitrić M., Kalpachidou T., Mair N., SchiefermeierMach N., Andratsch M., Qi Y., Langeslag M., Malsch P., RoseJohn S., Kress M. Impaired mechanical, heat, and cold nociception in a murine model of genetic TACE/ADAM17 knockdown. FASEB J. 2019; 33(3):44184431. https://doi.org/10.1096/fj.201801901R.
78. Randhawa I.A., Khatkar M.S., Thomson P.C., Raadsma H.W. A metaassembly of selection signatures in cattle. PLoS One. 2016;11(4): e0153013. https://doi.org/10.1371/journal.pone.0153013.
79. Reynés B., Klein Hazebroek M., GarcíaRuiz E., Keijer J., Oliver P., Palou A. Specific features of the hypothalamic leptin signaling response to cold exposure are reflected in peripheral blood mononuclear cells in rats and ferrets. Front. Physiol. 2017;8:581. https://doi.org/10.3389/fphys.2017.00581.
80. Sambarey A., Devaprasad A., Baloni P., Mishra M., Mohan A., Tyagi P., Singh A., Akshata J.S., Sultana R., Buggi S., Chandra N. Metaanalysis of host response networks identifies a common core in tuberculosis. NPJ Syst. Biol. Appl. 2017;3:4. https://doi.org/10.1038/s4154001700054.
81. Seelige R., SaddawiKonefka R., Adams N.M., Picarda G., Sun J.C., Benedict C.A., Bui J.D. Interleukin17D and Nrf2 mediate initial innate immune cell recruitment and restrict MCMV infection. Sci. Rep. 2018;8(1):13670. https://doi.org/10.1038/s41598018320112.
82. Sermyagin A.A., Dotsev A.V., Gladyr E.A., Traspov A.A., Deniskova T.E., Kostyunina O.V., Reyer H., Wimmers K., Barbato M., Paronyan I.A., Plemyashov K.V., Sölkner J., Popov R.G., Brem G., Zinovieva N.A. Wholegenome SNP analysis elucidates the genetic structure of Russian cattle and its relationship with Eurasian taurine breeds. Genet. Sel. Evol. 2018;50(1):37. https://doi.org/10.1186/s1271101804088.
83. Shen J., Hanif Q., Cao Y., Yu Y., Lei C., Zhang G., Zhao Y. Whole genome scan and selection signatures for climate adaption in Yanbian cattle. Front. Genet. 2020;11:94. https://doi.org/10.3389/fgene.2020. 00094.
84. Shi Q., Mu X., Hong L., Zheng S. SERPINE1 rs1799768 polymorphism contributes to sepsis risk and mortality. J. Renin-AngiotensinAldosterone Syst. 2015;16(4):12181224. https://doi.org/10.1177/1470320315614714.
85. Simonsen M., Mailund T., Pedersen C.N. Inference of large phylogenies using neighbourjoining. In: International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2010), Valencia, Spain, 20-23 January 2010. Berlin; Heidelberg: Springer, 2010;334344.
86. Stranden I., Kantanen J., Russo I.M., OrozcoterWengel P., Bruford M.W., Climgen Consortium. Genomic selection strategies for breeding adaptation and production in dairy cattle under climate change. Heredity (Edinb.). 2019;123(3):307317. https://doi.org/10.1038/s4143701902071.
87. Sun W., Chen H., Lei C., Lei X., Zhang Y. Genetic variation in eight Chinese cattle breeds based on the analysis of microsatellite markers. Genet. Sel. Evol. 2008;40(6):68166892. https://doi.org/10.1051/gse:2008027.
88. Svishcheva G., Babayan O., Lkhasaranov B., Tsendsuren A., Abdurasulov A., Stolpovsky Y. Microsatellite diversity and phylogenetic relationships among East Eurasian Bos taurus breeds with an emphasis on rare and ancient local cattle. Animals (Basel). 2020;10(9):1493. https://doi.org/10.3390/ani10091493.
89. Takatsu K. Interleukin5 and IL5 receptor in health and diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2011;87(8):463485. https://doi.org/10.2183/pjab.87.463.
90. Tapio I., Tapio M., Li M.H., Popov R., Ivanova Z., Kantanen J. Estimation of relatedness among nonpedigreed Yakutian cryobank bulls using molecular data: implications for conservation and breed management. Genet. Sel. Evol. 2010;42:28. https://doi.org/10.1186/129796864228.
91. Tom Tang Y., Emtage P., Funk W.D., Hu T., Arterburn M., Park E.E., Rupp F. TAFA: a novel secreted family with conserved cysteine residues and restricted expression in the brain. Genomics. 2004;83(4): 727734. https://doi.org/10.1016/j.ygeno.2003.10.006.
92. Tsuda K., KawaharaMiki R., Sano S., Imai M., Noguchi T., Inayoshi Y., Kono T. Abundant sequence divergence in the native Japanese cattle MishimaUshi (Bos taurus) detected using wholegenome sequencing. Genomics. 2013;102(4):372378. https://doi.org/10.1016/j.ygeno.2013.08.002.
93. Tsukamoto H., Takeuchi S., Kubota K., Kobayashi Y., Kozakai S., Ukai I., Shichiku A., Okubo M., Numasaki M., Kanemitsu Y., Matsumoto Y., Nochi T., Watanabe K., Aso H., Tomioka Y. Lipopolysaccharide (LPS)binding protein stimulates CD14dependent Tolllike receptor 4 internalization and LPSinduced TBK1IKKϵIRF3 axis activation. J. Biol. Chem. 2018;293(26):1018610201. https://doi.org/10.1074/jbc.M117.796631.
94. Wang M.S., Li Y., Peng M.S., Zhong L., Wang Z.J., Li Q.Y., Tu X.L., Dong Y., Zhu C.L., Wang L., Yang M.M., Wu S.F., Miao Y.W., Liu J.P., Irwin D.M., Wang W., Wu D.D., Zhang Y.P. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan сhickens. Mol. Biol. Evol. 2015;32(7):18801889. https://doi.org/10.1093/molbev/msv071.
95. Wang Z., Ma H., Xu L., Zhu B., Liu Y., Bordbar F., Chen Y., Zhang L., Gao X., Gao H., Zhang S., Xu L., Li J. Genomewide scan identifies selection signatures in Chinese Wagyu сattle using a highdensity SNP array. Animals (Basel). 2019;9(6):pii:E296. https://doi.org/10.3390/ani9060296.
96. Weldenegodguad M., Popov R., Pokharel K., Ammosov I., Ming Y., Ivanova Z., Kantanen J. Wholegenome sequencing of three native cattle breeds originating from the northernmost cattle farming regions. Front. Genet. 2019;9:728. https://doi.org/10.3389/fgene.2018.00728.
97. Wu D.D., Ding X.D., Wang S., Wójcik J.M., Zhang Y., Tokarska M., Li Y., Wang M.S., Faruque O., Nielsen R., Zhang Q., Zhang Y.P. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2018;2(7):11391145. https://doi.org/10.1038/s415590180562y.
98. Wu S., De Croos J.N., Storey K.B. Cold acclimationinduced upregulation of the ribosomal protein L7 gene in the freeze tolerant wood frog, Rana sylvatica. Gene. 2008;424(12):4855. https://doi.org/10.1016/j.gene.2008.07.023.
99. Xia X., Qu K., Zhang G., Jia Y., Ma Z., Zhao X., Huang Y., Chen H., Huang B., Lei C. Comprehensive analysis of the mitochondrial DNA diversity in Chinese cattle. Anim. Genet. 2019;50(1):7073. https://doi.org/10.1111/age.12749.
100. Xu Y., Jiang Y., Shi T., Cai H., Lan X., Zhao X., Plath M., Chen H. Wholegenome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS One. 2017;12(8):e0183921. https://doi.org/10.1371/journal.pone.0183921.
101. Yamamoto H., Fara A.F., Dasgupta P., Kemper C. CD46: the ‘multitasker’ of complement proteins. Int. J. Biochem. Cell. Biol. 2013; 45(12):28082820. https://doi.org/10.1016/j.biocel.2013.09.016.
102. Yeh T.Y., Beiswenger K.K., Li P., Bolin K.E., Lee R.M., Tsao T.S., Murphy A.N., Hevener A.L., Chi N.W. Hypermetabolism, hyperphagia, and reduced adiposity in tankyrasedeficient mice. Diabetes. 2009; 58(11):24762485. https://doi.org/10.2337/db081781.
103. Yurchenko A.A., Daetwyler H.D., Yudin N., Schnabel R.D., Vander Jagt C.J., Soloshenko V., Lhasaranov B., Popov R., Taylor J.F., Larkin D.M. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Sci. Rep. 2018a;8(1):12984. https://doi.org/10.1038/s4159801831304w.
104. Yurchenko A., Yudin N., Aitnazarov R., Plyusnina A., Brukhin V., Soloshenko V., Lhasaranov B., Popov R., Paronyan I.A., Plemyashov K.V., Larkin D.M. Genomewide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity (Edinb.). 2018b;120(2):125137. https://doi.org/10.1038/s4143701700243.
105. Zhang H., Paijmans J.L., Chang F., Wu X., Chen G., Lei C., Yang X., Wei Z., Bradley D.G., Orlando L., O’Connor T., Hofreiter M. Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nat. Commun. 2013;4:2755. https://doi.org/10.1038/ncomms3755.
106. Zhang T., Chen H., Qi L., Zhang J., Wu R., Zhang Y., Sun Y. Transcript profiling identifies early response genes against FMDV infection in PK15 cells. Viruses. 2018;10(7):364. https://doi.org/10.3390/v10070364.
107. Zhang W., Gao X., Zhang Y., Zhao Y., Zhang J., Jia Y., Zhu B., Xu L., Zhang L., Gao H., Li J., Chen Y. Genomewide assessment of genetic diversity and population structure insights into admixture and introgression in Chinese indigenous cattle. BMC Genet. 2018;19: 114. https://doi.org/10.1186/s1286301807059.
108. Zhang X., Wang K., Wang L., Yang Y., Ni Z., Xie X., Shao X., Han J., Wan D., Qiu Q. Genomewide patterns of copy number variation in the Chinese yak genome. BMC Genom. 2016;17:379. https://doi.org/10.1186/s1286401627026.
109. Zhang Y., Hu Y., Wang X., Jiang Q., Zhao H., Wang J., Ju Z., Yang L., Gao Y., Wei X., Bai J., Zhou Y., Huang J. Population structure, and selection signatures underlying highaltitude adaptation inferred from genomewide copy number variations in Chinese indigenous cattle. Front. Genet. 2020;10:1404. https://doi.org/10.3389/fgene.2019.01404.
110. Zhao Y.X., Yang J., Lv F.H., Hu X.J., Xie X.L., Zhang M., Li W.R., Liu M.J., Wang Y.T., Li J.Q., Liu Y.G., Ren Y.L., Wang F., Hehua E., Kantanen J., Arjen Lenstra J., Han J.L., Li M.H. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Mol. Biol. Evol. 2017;34(9):23802395. https://doi.org/10.1093/molbev/msx181.