Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The role of the corticotropin-releasing hormone and its receptors in the regulation of stress response

https://doi.org/10.18699/VJ21.025

Abstract

Stress is an essential part of everyday life. The neuropeptide corticotropin-releasing hormone (CRH, also called CRF and corticoliberin) plays a key role in the integration of neuroendocrine, autonomic and behavioral responses to stress. The activation of the hypothalamic-pituitary-adrenal axis (HPA axis) by neurons of the paraventricular hypothalamic nucleus (PVN), the primary site of synthesis CRH, triggers stress reactions. In addition to the hypothalamus, CRH is widespread in extrahypothalamic brain structures, where it functions as a neuromodulator for coordination and interaction between the humoral and behavioral aspects of a stress response. The axons of neurons expressing CRH are directed to various structures of the brain, where the neuropeptide interacts with specific receptors (CRHR1, CRHR2) and can affect various mediator systems that work together to transmit signals to different brain regions to cause many reactions to stress. Moreover, the effect of stress on brain functions varies from behavioral adaptation to increased survival and increased risk of developing mental disorders. Disturbances of the CRH system regulation are directly related to such disorders: mental pathologies (depression, anxiety, addictions), deviations of neuroendocrinological functions, inflammation, as well as the onset and development of neurodegenerative diseases such as Alzheimer’s disease. In addition, the role of CRH as a regulator of the neurons structure in the areas of the developing and mature brain has been established. To date, studies have been conducted in which CRHR1 is a target for antidepressants, which are, in fact, antagonists of this receptor. In this regard, the study of the participation of the CRH system and its receptors in negative effects on hormone-dependent systems, as well as the possibility of preventing them, is a promising task of modern physiological genetics. In this review, attention will be paid to the role of CRH in the regulation of response to stress, as well as to the involvement of extrahypothalamic CRH in pathophysiology and the correction of mental disorders.

About the Author

E. V. Sukhareva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Abou-Seif C., Shipman K., Allars M., Norris M., Chen Y., Smith R., Nicholson R. Tissue specific epigenetic differences in CRH gene expression. Front. Biosci. 2012;17:713-725. DOI 10.2741/3953.

2. Aguilera G., Liu Y. The molecular physiology of CRH neurons. Front. Neuroendocrin. 2012;33:67-84. DOI 10.1016/j.yfrne.2011.08.002.

3. Andres A., Regev L., Phi L., Seese R., Chen Y., Gall C., Baram T. NMDA receptor activation and calpain contribute to disruption of dendritic spines by the stress neuropeptide CRH. J. Neurosci. 2013; 33(43):16945-16960. DOI 10.1523/JNEUROSCI.1445-13.2013.

4. Bale T., Contarino A., Smith G., Chan R., Gold L., Sawchenko P., Koob G., Vale W., Lee K. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat. Genet. 2000;24:410-414. DOI 10.1038/74263.

5. Bale T., Vale W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu. Rev. Pharmacol. 2004;44:525-557. DOI 10.1146/annurev.pharmtox.44.101802.121410.

6. Brewin C., Kleiner J., Vasterling J., Field A. Memory for emotionally neutral information in posttraumatic stress disorder: a meta-analytic investigation. J. Abnorm. Psychol. 2007;116:448-463. DOI 10.1037/0021-843X.116.3.448.

7. Chen Y., Andres A., Frotscher M., Baram T. Tuning synaptic transmission in the hippocampus by stress: the CRH system. Front. Cell. Neurosci. 2012;6:13. DOI 10.3389/fncel.2012.00013.

8. Chen Y., Kramár E., Chen L., Babayan A., Andres A., Gall C., Lynch G., Baram T. Impairment of synaptic plasticity by the stress mediator CRH involves selective destruction of thin dendritic spines via RhoA signaling. Mol. Psychiatry. 2013;18:485-496. DOI 10.1038/mp.2012.17.

9. Dautzenberg F., Hauger R. The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol. Sci. 2002;23: 71-77. DOI 10.1016/s0165-6147(02)01946-6.

10. Deussing J., Chen A. The corticotropin-releasing factor family: physiology of the stress response. Physiol. Rev. 2018;98(4):2225-2286. DOI 10.1152/physrev.00042.2017.

11. Donner N., Davies S., Fitz S., Kienzle D., Shekhar A., Lowry C. Crh receptor priming in the bed nucleus of the stria terminalis (BNST) induces tph2 gene expression in the dorsomedial dorsal raphe nucleus and chronic anxiety. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2020;96:109730. DOI 10.1016/j.pnpbp.2019.109730.

12. Donner N., Siebler P., Johnson D., Villarreal M., Mani S., Matti A., Lowry C. Serotonergic systems in the balance: CRHR1 and CRHR2 differentially control stress-induced serotonin synthesis. Psychoneuroendocrinology. 2016;63:178-190. DOI 10.1016/j.psyneuen.2015.09.024.

13. Eraslan E., Akyazi İ., Ergül-Ekiz E., Matur E. Noise stress-induced changes in mRNA levels of corticotropin-releasing hormone family molecules and glucocorticoid receptors in the rat brain. Folia Biol. 2015;61(2):66-73.

14. Erb S., Stewart J. A role for the bed nucleus of the stria terminalis, but not the amygdala, in the effects of corticotropin-releasing factor on stress-induced reinstatement of cocaine seeking. J. Neurosci. 1999; 19(20):RC35. DOI 10.1523/JNEUROSCI.19-20-j0006.1999.

15. Fuzesi T., Daviu N., Wamsteeker Cusulin J., Bonin R., Bains J. Hypothalamic CRH neurons orchestrate complex behaviours after stress. Nat. Commun. 2016;7:11937. DOI 10.1038/ncomms11937.

16. Gallagher J., Orozco-Cabal L., Liu J., Shinnick-Gallagher P. Synaptic physiology of central CRH system. Eur. J. Pharmacol. 2008;583: 215-225. DOI 10.1016/j.ejphar.2007.11.075.

17. Gallopin T., Geoffroy H., Rossier J., Lambolez B. Cortical sources of CRF, NKB, and CCK and their effects on pyramidal cells in the neocortex. Cereb. Cortex. 2006;16(10):1440-1452. DOI 10.1093/cercor/bhj081.

18. Grammatopoulos D., Chrousos G. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol. Metab. 2002;13:436-444. DOI 10.1016/s1043-2760(02)00670-7.

19. Gutknecht E., Van der Linden I., Van Kolen K., Verhoeven K., Vauquelin G., Dautzenberg F.M. Molecular mechanisms of corticotropin-releasing factor receptor-induced calcium signaling. Mol. Pharmacol. 2009;75:648-657. DOI 10.1124/mol.108.050427.

20. Hauger R., Risbrough V., Brauns O., Dautzenberg F. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol. Disord. Drug Targets. 2006;5:453-479. DOI 10.2174/187152706777950684.

21. Henckens M., Deussing J., Chen A. Region-specific roles of the corticotropin-releasing factor-urocortin system in stress. Nat. Rev. Neurosci. 2016;17:636-651. DOI 10.1038/nrn.2016.94.

22. Henry B., Vale W., Markou A. The effect of lateral septum corticotropin-releasing factor receptor 2 activation on anxiety is modulated by stress. J. Neurosci. 2006;26:9142-9152. DOI 10.1523/JNEUROSCI.1494-06.2006.

23. Herman J., Figueiredo H., Mueller N., Ulrich-Lai Y., Ostrander M.M., Choi D., Cullinan W. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front. Neuroendocrin. 2003;24:151-180. DOI 10.1016/j.yfrne.2003.07.001.

24. Herman J., Tasker J. Paraventricular hypothalamic mechanisms of chronic stress adaptation. Front. Endocrinol. 2016;7:137. DOI 10.3389/fendo.2016.00137.

25. Inda C., Armando N., Dos Santos Claro P., Silberstein S. Endocrinology and the brain: corticotropin-releasing hormone signaling. Endocr. Connect. 2017;6(6):R99-R120. DOI 10.1530/EC-17-0111.

26. Issler O., Carter R., Paul E., Kelly P., Olverman H., Neufeld-Cohen A., Kuperman Y., Lowry C., Seckl J., Chen A., Jamieson P. Increased anxiety in corticotropin-releasing factor type 2 receptor-null mice requires recent acute stress exposure and is associated with dysregulated serotonergic activity in limbic brain areas. Biol. Mood Anxiety Disord. 2014;4:1. DOI 10.1186/2045-5380-4-1.

27. Ivy A., Rex C., Chen Y., Dubé C., Maras P., Grigoriadis D., Gall C., Lynch G., Baram T. Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. J. Neurosci. 2010;30(39):13005-13015. DOI 10.1523/JNEUROSCI.1784-10.2010.

28. Janssen D., Kozicz T. Is it really a matter of simple dualism? Corticotropin-releasing factor receptors in body and mental health. Front. Endocrinol. 2013;4:28. DOI 10.3389/fendo.2013.00028.

29. Joels M., Baram T. The neuro-symphony of stress. Nat. Rev. Neurosci. 2009;10:459-466. DOI 10.1038/nrn2632.

30. Kalinina T.S., Sukhareva E.V., Dygalo N.N. Canonical and noncanonical mechanisms of glucocorticoid stress hormone action. Uspekhi Fiziologicheskikh Nauk = Advances in Physiological Sciences. 2016;47(3):59-69. (in Russian)

31. Kelly E., Bailey C., Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br. J. Pharmacol. 2008;153:379-388. DOI 10.1038/sj.bjp.0707604.

32. King B., Nicholson R. Advances in understanding corticotrophin-releasing hormone gene expression. Front. Biosci. 2007;12:581-590. DOI 10.2741/2084.

33. Koenig J., Walker C., Romeo R., Lupien S. Effects of stress across the lifespan. Stress. 2011;14:475-480. DOI 10.3109/10253890.2011.604879.

34. Kolber B., Boyle M., Wieczorek L., Kelley C., Onwuzurike C., Nettles S., Vogt S., Muglia L. Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice. J. Neurosci. 2010;30(7):2571-2581. DOI 10.1523/JNEUROSCI.4470-09.2010.

35. Kono J., Konno K., Talukder A., Fuse T., Abe M., Uchida K., Horio S., Sakimura K., Watanabe M., Itoi K. Distribution of corticotropinreleasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse. Brain Struct. Funct. Available online 2016, 16 Sept. Publ. 2017;222(4):1705-1732. DOI 10.1007/s00429-016-1303-0.

36. Kovacs K. CRH: the link between hormonal-, metabolic- and behavioral responses to stress. J. Chem. Neuroanat. 2013;54:25-33. DOI 10.1016/j.jchemneu.2013.05.003.

37. Lightman S. The neuroendocrinology of stress: a never ending story. J. Neuroendocrinol. 2008;20:880-884. DOI 10.1111/j.1365-2826.2008.01711.x.

38. Maier S., Watkins L. Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropinreleasing factor. Neurosci. Biobehav. Rev. 2005;29:829-841. DOI 10.1016/j.neubiorev.2005.03.021.

39. Maras P., Baram T. Sculpting the hippocampus from within: stress, spines, and CRH. Trends Neurosci. 2012;35:315-324. DOI 10.1016/j.tins.2012.01.005.

40. Marcinkiewcz C., Mazzone C., D’Agostino G., Halladay L., Hardaway J., DiBerto J., Navarro M., Burnham N., Cristiano C., Dorrier C., Tipton G., Ramakrishnan C., Kozicz T., Deisseroth K., Thiele T., McElligott Z., Holmes A., Heisler L., Kash T. Serotonin engages an anxiety and fear-promoting circuit in the extended amygdala. Nature. 2016;537(7618):97-101. DOI 10.1038/nature19318.

41. Markovic D., Grammatopoulos D. Focus on the splicing of secretin GPCRs transmembrane-domain 7. Trends Biochem. Sci. 2009;34: 443-452. DOI 10.1016/j.tibs.2009.06.002.

42. Markovic D., Punn A., Lehnert H., Grammatopoulos D. Intracellular mechanisms regulating corticotropin-releasing hormone receptor-2β endocytosis and interaction with extracellularly regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling cascades. Mol. Endocrinol. 2008;22:689-706. DOI 10.1210/me.2007-0136.

43. Muglia L., Bethin K., Jacobson L., Vogt S., Majzoub J. Pituitary-adrenal axis regulation in CRH-deficient mice. Endocr. Res. 2000;26:1057-1066. DOI 10.3109/07435800009048638.

44. Muller M., Zimmermann S., Sillaber I., Hagemeyer T., Deussing J., Timpl P., Kormann M., Droste S., Kühn R., Reul J., Holsboer F., Wurst W. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat. Neurosci. 2003;6:1100-1107. DOI 10.1038/nn1123.

45. Neufeld-Cohen A., Tsoory M., Evans A., Getselter D., Gil S., Lowry C., Vale W., Chen A. A triple urocortin knockout mouse model reveals an essential role for urocortins in stress recovery. Proc. Natl. Acad. Sci. USA. 2010;107:19020-19025. DOI 10.1073/pnas.1013761107.

46. Nicholson R., King B., Smith R. Complex regulatory interactions control CRH gene expression. Front. Biosci. 2004;9:32-39. DOI 10.2741/1204.

47. Perez-Castro C., Renner U., Haedo M., Stalla G., Arzt E. Cellular and molecular specificity of pituitary gland physiology. Physiol. Rev. 2012;92:1-38. DOI 10.1152/physrev.00003.2011.

48. Philbert J., Belzung C., Griebel G. The CRF1 receptor antagonist SSR125543 prevents stress-induced cognitive deficit associated with hippocampal dysfunction: comparison with paroxetine and D-cycloserine. Psychopharmacol. 2013;228:97-107. DOI 10.1007/s00213-013-3020-1.

49. Pleil K., Rinker J., Lowery-Gionta E., Mazzone C., McCall N., Kendra A., Olson D., Lowell B., Grant K., Thiele T., Kash T. NPY signaling inhibits extended amygdala CRF neurons to suppress binge alcohol drinking. Nat. Neurosci. 2015;18(4):545-552. DOI 10.1038/nn.3972.

50. Quax R., Manenschijn L., Koper J., Hazes J., Lamberts S., van Rossum E., Feelders R. Glucocorticoid sensitivity in health and disease. Nat. Rev. Endocrinol. 2013;9:670-686. DOI 10.1038/nrendo.2013.183.

51. Rasmusson A., Pineles S. Neurotransmitter, peptide, and steroid hormone abnormalities in PTSD: biological endophenotypes relevant to treatment. Curr. Psychiatry Rep. 2018;20(7):52. DOI 10.1007/s11920-018-0908-9.

52. Regev L., Neufeld-Cohen A., Tsoory M., Kuperman Y., Getselter D., Gil S., Chen A. Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation. Mol. Psychiatry. 2011;16: 714-728. DOI 10.1038/mp.2010.64.

53. Regev L., Tsoory M., Gil S., Chen A. Site-specific genetic manipulation of amygdala corticotropin-releasing factor reveals its imperative role in mediating behavioral response to challenge. Biol. Psychiatry. 2012;71(4):317-326. DOI 10.1016/j.biopsych.2011.05.036.

54. Reul J., Holsboer F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr. Opin. Pharmacol. 2002;2:23-33. DOI 10.1016/s1471-4892(01)00117-5.

55. Reyes B., Valentino R., Van Bockstaele E. Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology. 2008;149:122-130. DOI 10.1210/en.2007-0705.

56. Roozendaal B., Brunson K., Holloway B., McGaugh J., Baram T. Involvement of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating memory consolidation. Proc. Natl. Acad. Sci. USA. 2002;99(21):13908-13913. DOI 10.1073/pnas.212504599.

57. Sasaki M., Sato H. Polysynaptic connections between Barrington’s nucleus and sacral preganglionic neurons. Neurosci. Res. 2013;75(2): 150-156. DOI 10.1016/j.neures.2012.11.008.

58. Sink K., Walker D., Freeman S., Flandreau E., Ressler K., Davis M. Effects of continuously enhanced corticotropin releasing factor expression within the bed nucleus of the stria terminalis on conditioned and unconditioned anxiety. Mol. Psychiatry. 2013;18(3):308-319. DOI 10.1038/mp.2011.188.

59. Slater P., Cerda C., Pereira L., Andres M., Gysling K. CRF binding protein facilitates the presence of CRF type 2α receptor on the cell surface. Proc. Natl. Acad. Sci. USA. 2016;113:4075-4080. DOI 10.1073/pnas.1523745113.

60. Stengel A., Taché Y. Corticotropin-releasing factor signaling and visceral response to stress. Exp. Biol. Med. 2010;235(10):1168-1178. DOI 10.1258/ebm.2010.009347.

61. Studeny S., Vizzard M. Corticotropin-releasing factor (CRF) expression in postnatal and adult rat sacral parasympathetic nucleus (SPN). Cell Tissue Res. 2005;322(3):339-352. DOI 10.1007/s00441-005-0014-2.

62. Sukhareva E.V., Lanshakov D., Kalinina T., Bulygina V., Dygalo N. Extrahypothalamic CRH and its receptors change tyrosine hydroxylase expression after neonatal dexamethasone treatment. Eur. Neuropsychopharmacol. 2019;29(6):301-302. DOI 10.1016/j.euroneuro.2019.09.438.

63. Tian J., Bishop G. Frequency-dependent expression of corticotropin releasing factor in the rat’s cerebellum. Neuroscience. 2003;121(2): 363-377. DOI 10.1016/s0306-4522(03)00493-7.

64. Valentino R., Van Bockstaele E. Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur. J. Pharmacol. 2008;583:194-203. DOI 10.1016/j.ejphar.2007.11.062.

65. Van Gaalen M., Stenzel-Poore M., Holsboer F., Steckler T. Effects of transgenic overproduction of CRH on anxiety-like behaviour. Eur. J. Neurosci. 2002;15:2007-2015. DOI 10.1046/j.1460-9568.2002.02040.x.

66. Van Kolen K., Dautzenberg F., Verstraeten K., Royaux I., De Hoogt R., Gutknecht E., Peeters P. Corticotropin releasing factor-induced ERK phosphorylation in AtT20 cells occurs via a cAMP-dependent mechanism requiring EPAC2. Neuropharmacology. 2010;58:135-144. DOI 10.1016/j.neuropharm.2009.06.022.

67. Wang B., You Z., Rice K., Wise R. Stress-induced relapse to cocaine seeking: roles for the CRF2 receptor and CRF-binding protein in the ventral tegmental area of the rat. Psychopharmacol. 2007;193:283-294. DOI 10.1007/s00213-007-0782-3.

68. Wang X., Chen Y., Wolf M., Wagner K., Liebl C., Scharf S., Harbich D., Mayer B., Wurst W., Holsboer F., Deussing J., Baram T., Müller M., Schmidt M. Forebrain CRHR1 deficiency attenuates chronic stressinduced cognitive deficits and dendritic remodeling. Neurobiol. Dis. 2011;42:300-310. DOI 10.1016/j.nbd.2011.01.020.

69. Waters R., Rivalan M., Bangasser D., Deussing J., Ising M., Wood S., Holsboer F., Summers C. Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci. Biobehav. Rev. 2015;58:63-78. DOI 10.1016/j.neubiorev.2015.07.011.

70. Zmijewski M., Slominski A. Emerging role of alternative splicing of CRF1 receptor in CRF signaling. Acta Biochim. Pol. 2010;57: 1-13.

71. Zorrilla E., Roberts A., Rivier J., Koob G. Anxiolytic-like effects of antisauvagine-30 in mice are not mediated by CRF2 receptors. PLoS One. 2013;8:e63942. DOI 10.1016/j.yhbeh.2016.03.002.

72. Zorrilla E., Valdez G., Nozulak J., Koob G., Markou A. Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety-like behavior and motor activation in the rat. Brain Res. 2002;952:188-199. DOI 10.1016/s0006-8993(02)03189-x.


Review

Views: 5786


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)