Halophilic bacteria of salt lakes and saline soils of the Peri-Caspian lowland (Republic of Daghestan) and their biotechnological potential
https://doi.org/10.18699/VJ21.026
Abstract
The article presents the results of studying the biodiversity and biotechnological potential of halophilic microorganisms from the thermal highly mineralized Berikey Lake, the salty Lake Tarumovskoye and saline soils of the Peri-Caspian Lowland (Republic of Daghestan). Denitrifying halophilic bacteria of the genus Halomonas and Virgibacillus were identified using microbiological methods and 16S rRNA gene analysis. A new species Halomonas sp. G2 (MW386470) with a similarity of the nucleotide sequences of the 16S rRNA genes is 95 %. Strain G2 is an extreme halophile capable of growing in the range of 5–25 % NaCl (optimum 25 %) and forming a carotenoid pigment. Mesophil, 30–37 °С (optimum 30 °С); neutrophil, pH 6–8 (optimum 7.2–7.4). Strain G2 chemolithotroph; reduces nitrate or nitrite as electron donors; catalase-, amylase-, protease- and β-galactosidase-positive; lipase-, oxidase- and urease-negative. Not able to hydrolyze inositol, indole; produces lysine, gelatin, ectoine; uses citrate and sodium malate as a source of carbon and energy; does not produce ornitin, H2S or acid from d-mannose, sucrose, glycerol, cellobiose, except for lactose and d-glucose. Susceptible to trimethoprim, ciprofloxacin, ofloxacin, kanamycin, vancomycin, rifampicin, cefuroxime, ampicillin, ceftazidime, fosfomycin, clarithromycin, cefepime, cefaclor. The G+C content in DNA is 67.3 %. A distinctive characteristic of the isolate was the production of industrially significant hydrolytic enzymes such as amylase, protease, β-galactosidase, and oxidoreductase (catalase) at a NaCl concentration of 25 % in the medium. Habitat: saline soils on the territory of the Tersko-Kumskaya lowland (Republic of Daghestan, Russia). The rest of the halophilic isolates of H. ventosae G1 (MW386469), H. elongata G3 (MW386471), V. salinarius B2 (MW386472), and V. salinarius B3 (MW386473) had a high degree of similarity (100 %) with the type strains of H. elongata DSM 2581Т and V. salarius DSM 18441Т; the content of G+C in DNA was 65.8, 66.5, 42.8 and 37.3 %, respectively. The strains had a high biotechnological potential at NaCl concentrations of 5 and 25 % in the medium. The data obtained expanded the understanding of the diversity and ecological significance of denitrifying bacteria in the functioning of arid ecosystems and make it possible to identify strains producing enzymes of industrial importance.
Keywords
About the Authors
E. A. KhalilovaRussian Federation
Makhachkala, Daghestan
S. T. Kotenko
Russian Federation
Makhachkala, Daghestan
E. A. Islammagomedova
Russian Federation
Makhachkala, Daghestan
A. A. Abakarova
Russian Federation
Makhachkala, Daghestan
N. A. Chernyh
Russian Federation
Moscow
D. A. Aliverdiyeva
Russian Federation
Makhachkala, Daghestan
References
1. Banciu H.L., Enach M., Rodriguez R.M., Oren A., Ventosa A. Ecology and physiology of halophilic microorganisms – Thematic issue based on papers presented at Halophiles 2019 – 12th International Conference on Halophilic Microorganisms, Cluj-Napoca, Romania, 24–28 June, 2019. FEMS Microbiol. Lett. 2020;366(23):1-4. DOI 10.1093/femsle/fnz250.
2. Вaumann P., Baumann L. The marine gram-negative Eubacteria. In: Starr M.P., Stolp H., Trüper H.G., Balows A., Schlegel H.G. (Eds.). The Prokaryotes. A handbook on habitats, isolation nd identification of bacteria. Berlin: Springer-Verlag, 1986;2:1302-1331.
3. Begmatov Sh.A., Selitskaya O.V., Vasileva L.V., Berestovskaja Yu.Yu., Manucharova N.A., Drenova N.V. Morphophysiological features of some cultivable bacteria from saline soils of the Aral Sea region. Eur. J. Soil Sci. 2020;53(1):90-96. DOI 10.1134/S1064229320010044.
4. Birnboim H.C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979; 7(6):1513-1523.
5. Bonch-Osmolovskaya E.A., Atomi H. Editorial overview: Extremophiles: from extreme environments to highly stable catalysts. Curr. Opin. Microbiol. 2015;25:88-96.
6. Bulygina E.S., Kuznetsov B.B., Marusina A.I., Kravchenko I.K., Bykova S.A., Kolganova T.V., Galchenko V.F. Study of nucleotide sequences of nif H genes in methanotrophic bacteria. Mikrobiologiya = Microbiology. 2002;71(4):425-432.
7. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: architecture and applications. BMC Bioinform. 2009;10(421):1-9. DOI 10.1186/1471-2105-10-421.
8. Chernousova E.Yu., Akimov V.N., Gridneva E.V., Dubinina G.A., Grabovich M.Yu. Phylogenetic in situ/ex situ analysis of a sulfur mat microbial community from a thermal sulfide spring in the North Caucasus. Mikrobiologiya = Microbiology. 2008;77(2):219-223. DOI 10.1134/S002626170802015X.
9. Cira-Chávez L.A., Guevara-Luna J., Soto-Padilla M.Y., RománPonce B., Vásquez-Murrieta M.S., Estrada-Alvarado M.I. Kinetics of halophilic enzymes. In: Rajendran L., Fernandez C. (Eds.). Kinetics of Enzymatic Synthesis. IntOpen, 2018;1-25. DOI 10.5772/intechopen.81100.
10. Corral P., Amoozegar M.A., Ventosa A. Halophiles and their biomolecules: recent advances and future applications in biomedicine. Marine Drugs. 2020;18:2-33. DOI 10.3390/md18010033.
11. Delgado-García M., Valdivia-Urdiales B., Aguilar-Gonzalez C.N., Contreras-Esquivel J.C., Rodriguez-Herrera R. Halophilic hydrolases as a new tool for the biotechnological industries. J. Sci. Food Agric. 2012;92(13):2575-2580. DOI 10.1002/jsfa.5860.
12. De Lourdes Moreno M., Pérez D., García M.T., Mellado E. Halophilic bacteria as a source of novel hydrolytic enzymes. Life. 2013;3(1): 38-51. DOI 10.3390/life3010038.
13. Di Donato P., Buono A., Poli A., Finore I., Abbamondi R.G., Nicolaus B., Lama L. Exploring marine environments for the identification of extremophiles and their enzymes for sustainable and green bioprocesses. Sustainability. 2019;11:149-169. DOI 10.3390/su11010149.
14. Franzmann P.D., Wehmeyer U., Stackebrandt E. Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst. Appl. Microbiol. 1988;11: 16-19.
15. Ghosh S., Kumar S., Kumar Khare S. Microbial diversity of saline habitats: an overview of biotechnological applications. In: Giri B., Varma A. (Eds.). Microorganisms in Saline Environments: Strategies and Functions (Ser. Soil Biology. 56). Cham: Springer, 2019;65-92. DOI 10.1007/978-3-030-18975-4_4.
16. Gordon R.E., Smith M.M. Rapidly growing, acid fast bacteria. I. Species descriptions of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Neumann. J. Bacteriol. 1953;66(1):41-48.
17. Gridneva E.V., Grabovich M.Yu., Dubinina G.A., Chernousova E.Yu., Akimov V.N. Ecophysiology of lithotrophic sulfur-oxidizing Sphaerotilus species from sulfide springs in the Northern Caucasus. Mikrobiologiya = Microbiology. 2009;78(1):76-83.
18. Heyndrickx M., Lebbe L., Kersters K., De Vos P., Forsyth G., Logan N.A. Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int. J. Syst. Bacteriol. 1998;48(1):99-106. DOI 10.1099/00207713-48-1-99.
19. Heyrman J., Logan N.A., Busse H.-J., Balcaen A., Lebbe L., RodriguezDiaz M., Swings J., De Vos P. Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus Salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. Int. J. Syst. Evol. Microbiol. 2003;53(2):501-511. DOI 10.1099/ijs.0.02371-0.
20. Holt J.R., Corey D.P., Eatock R.A. Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J. Neurosci. 1997;17:8739-8748.
21. Hua N.P., Hamza-Chaffai A., Vreeland R.H., Isoda H., Naganuma T. Virgibacillus salarius sp. nov., a halophilic bacterium isolated from a Saharan salt lake. Int. J. Syst. Evol. Microbiol. 2008;58:2409-2414. DOI 10.1099/ijs.0.65693-0.
22. Kaitouni L.B.D., Anissi J., Sendide K., Hassouni M.E. Diversity of hydrolase-producing halophilic bacteria and evaluation of their enzymatic activities in submerged cultures. Annals Microbiol. 2020; 70:33. DOI 10.1186/s13213-020-01570-z.
23. Khalilova E.A., Kotenko S.Ts., Islammagomedova E.A., Hasanov R.Z., Abakarova A.A., Aliverdiyeva D.A. Extremophilic microbial communities of saline soils and their diversity in the regions of the Caspian depression. Aridnye Ekosistemy = Arid Ecosystems. 2017;7(2): 116-120. DOI 10.1134/S2079096117020068.
24. Khalilova E.A., Kotenko S.Ts., Islammagomedova E.A., Hasanov R.Z., Abakarova A.A., Aliverdiyeva D.A. Halophilic microbial communities and their biodiversity in the arid regions of the Caspian Lowland. Aridnye Ekosistemy = Arid Ecosystems. 2020;10(1):79-85. DOI 10.1134/S2079096120010084.
25. Khalilova E.A., Nuratinov R.A., Kotenko S.Ts., Islammagomedova E.A. Hydrocarbon-oxidizing microorganisms of hot springs and their significance in the assessment of the biodiversity of microbial communities. Aridnye Ekosistemy = Arid Ecosystems. 2014;4(1): 25-30. DOI 10.1134/S2079096114010028.
26. Kindzierski V., Raschke S., Knabe N., Siedler F., Scheffer B., Grau K.P., Pfeiffer F., Oesterhelt D., Marin-Sanguino A., Kunte H.J. Osmoregulation in the halophilic bacterium Halomonas elongata: a case study for integrative systems biology. PLoS One. 2017;12(1):1-22. DOI 10.1371/journal.pone.0168818.
27. Kolganova T.V., Kuznetsov B.B., Turova T.P. Designing and testing of oligonucleotide primers for amplification and sequencing of 16S rRNA genes of archaea. Mikrobiologiya = Microbiology. 2002; 71(2):243-246.
28. Kushner D.J., Kamekura M. Physiology of halophilic eubacteria. In: Rodríguez-Varela F. (Ed.). Halophilic Bacteria. Boca Raton, FL, USA: CRC Press, 1988;1:109-138.
29. Kuznetsov A.E., Kalenov S.V. Russian Federation Patent RU 2323226. Method for preparing halophilic bacterium biomass. Bull. No. 12. 2008;6. (in Russian)
30. Lalov V.V., Osokina N.V., Piorunskij D.A., Chizhikov M.A. Russian Federation Patent RU 2115722 C1. Method of halophilic microorganism culturing. 1998;5 (in Russian)
31. Lane D.J. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. In: Stackebrandt E., Goodfellow M. (Eds.). New York: John Wiley & Sons, 1991;115-175.
32. Lee S.-Y., Kang C.-H., Oh T.K., Yoon J.H. Virgibacillus campisalis sp. nov., from a marine solar saltern. Int. J. Syst. Evol. Microbiol. 2012;62:347-351. DOI 10.1099/ijs.0.033084-0.
33. Liu C., Baffoe D.K., Zhang M. Halophile, an essential platform for bioproduction. J. Microbiol. Methods. 2019;166:105704. DOI 10.1016/j.mimet.2019.105704.
34. Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 1961;3:208-218. DOI 10.1016/S0022-2836(61)80047-8.
35. Namsaraev Z.B., Babasanova O.B., Dunaevsky Y.E., Akimov V.N., Barkhutova D.D., Gorlenko V.M., Namsaraev B.B. Anoxybacillus mongoliensis sp. nov., a novel thermophilic proteinase producing bacterium isolated from alkaline hot spring, Central Mongolia. Microbiology. 2010;79(4):491-499.
36. Netrusov A.I., Egorova M.A., Zakharchuk L.M. Laboratory Manual on Microbiology for college students. Moscow: Akademiya Publ., 2005. (in Russian)
37. Owen R.J., Hill L.R., Lapage S.P. Determination of DNA base composition from melting profiles in dilute buffers. Biopolimers. 1969; 7:503-516.
38. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chainterminating inhibitors. Proс. Natl. Acad. Sci. USA. 1977;84:5463-5467.
39. Schwibbert K., Marin-Sanguino A., Bagyan I., Heidrich G., Lentzen G., Seitz H., Rampp M., Schuster S.C., Klenk H.P., Pfeiffer F., Oesterhelt D., Kunte H.J. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ. Microbiol. 2011;13:1973-1994. DOI 10.1111/j.1462-2920.2010.02336.
40. Steel K.J. The oxidase reaction as a taxonomic tool. J. Gen. Microbiol. 1961;25:297-306.
41. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10:512-526.
42. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30:2725-2729.
43. Thomas J.C., Khour R., Neeley C.K., Akroush A.M., Davies E.C. A fast CTAB method of human DNA isolation for polymerase chain reaction applications. Biochem. Educ. 1997;25(4):233-235. DOI 10.1016/S0307-4412(97)00122-2.
44. Van de Peer Y., De Wachter R. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 1994; 10:569-570. DOI 10.1093/bioinformatics/10.5.569.
45. Varrella S., Tangherlini M., Corinaldesi C. Deep hypersaline anoxic basins as untapped reservoir of polyextremophilic prokaryotes of biotechnological interest. Mar. Drugs. 2020;18(2):91. DOI 10.3390/md18020091.
46. Vreeland R.H., Litchfield C.D., Martin E.L., Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol. 1980;3(2):485-495. DOI 10.1099/00207713-30-2-485.
47. Wang T., Zhang L., Bo L., Zhu Y., Tang X., Liu W. Simultaneous heterotrophic nitrification and aerobic denitrification at high concentrations of NaCl by Halomonas nacteria. IOP Conf. Ser: Earth. Environ. Sci. 2019;237(5):052033. DOI 10.1088/1755-1315/237/5/052033.
48. Zavarzin G.A. Microbial diversity studies at the Winogradsky Institute of Microbiology. Mikrobiologiya = Microbiology. 2004;73(5):509-522. DOI 10.1023/B:MICI.0000044242.93603.00.