Preview

Vavilov Journal of Genetics and Breeding

Advanced search

WHEAT ANTIMICROBIAL PEPTIDES

Abstract

Antimicrobial peptides (AMPs) are low-molecular-weight defense polypeptides, produced in all living organisms either constitutively or upon perception of signals from pathogenic microorganisms. They are important components of the immune system in both animals and plants. AMPs differ in structure and mode of action. Most of them belong to cysteine-rich peptides; their molecules contain even numbers of cysteine residues involved in the formation of disulphide bonds, which stabilize the peptide structure. A number of families of plant AMPs have been isolated on the base of amino acid sequence similarity and 3D structure. Plant AMP genes can be used in the engineering of pest resistance in crops and development of novel antibiotics and antimycotics. We provide a concise review of properties and gene structures of major AMP families discovered by the authors in Triticum kiharae seeds, including glycine-rich peptides, defensins, hevein-like peptides and the so-called 4-Cys peptides.

About the Authors

T. I. Odintsova
Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
Russian Federation


T. V. Korostyleva
Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
Russian Federation


L. L. Utkina
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
Russian Federation


Ya. A. Andreev
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
Russian Federation


A. A. Slavokhotova
Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
Russian Federation


E. A. Istomina
Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
Russian Federation


V. A. Pukhal’skii
Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
Russian Federation


T. A. Egorov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
Russian Federation


References

1. Ajesh K., Sreejith K. Peptide antibiotics: an alternative and antimicrobial strategy to circumvent fungal infections // Peptides. 2009. V. 30. P. 999–1006.

2. Benko-Iseppon A.M., Galdino S.L., Calsa T. Jr. et al. Overview on plant antimicrobial peptides // Curr. Protein Pept. Sci. 2010. V. 11. P. 181–188.

3. Broekaert W.F., Cammue B.P.A., De Bolle M.F.C. et al. Antimicrobial peptides from plants // Crit. Rev. Plant Sci. 1997. V. 16. P. 297–323.

4. Bulet P., Hetru C., Dimarcq J.L., Hoffmann D. Antimicrobial peptides in insects, structure and function // Dev. Comp. Immunol. 1999. V. 23. Nо 4/5. P. 329–44.

5. Castro M.S., Fontes W. Plant defense and antimicrobial peptides // Protein Pept. 2005. V. 12. P. 13–18.

6. da Rocha Pitta M.G., da Rocha Pitta M.G., Galdino S.L. Development of novel therapeutic drugs in humans from plant antimicrobial peptides // Curr. Protein Pept. Sci. 2010. V. 11. P. 236–247.

7. Dubovskii P.V., Vassilevski A.A., Slavokhotova A.A. et al. Solution structure of a defense peptide from wheat with a 10-cysteine motif // Biochem. Biophys. Res. Commun. 2011. V. 411. Nо 1. Р. 14–18.

8. Egorov T.A., Odintsova T.I., Pukhalsky V.A., Grishin E.V. Diversity of wheat antimicrobial peptides // Peptides. 2005. V. 26. P. 2064–2073.

9. Gao G.H., Liu W., Dai J.X. et al. Solution structure of PAFP-S: a new knottin-type antifungal peptide from the seeds of Phytolacca americana // Biochemistry. 2001. V. 40. P. 10973–10978.

10. Garcia-Olmedo F., Molina A., Alamillo J.M., Rodriguez-Palenzuela P. Plant defense peptides // Biopolymers (Peptide Sci.). 1998. V. 47. P. 479–491.

11. Garcia-Olmedo F., Rodriguez-Palenzuela P., Molina A. et al. Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence // FEBS Letters. 2001. V. 498. P. 219–222.

12. Farrokhi N., Whitelegge J.P., Brusslan J.A. Plant peptides and peptidomics // Plant Biotechnol. J. 2008. V. 6. P. 105–134.

13. Huang R-H., Xiang Y., Liu X-Z. et al. Two novel antifungal peptides distinct with a fi ve-disulfi de motif from the bark of Eucommia ulmoides Oliv // FEBS Lett. 2002. V. 521. P. 87–90.

14. Kido E.A., Pandolfi V., Houllou-Kido L.M. et al. Plant antimicrobial peptides: an overview of SuperSAGE transcriptional profi le and a functional review // Curr. Protein Pept. Sci. 2010. V. 11. P. 220–230.

15. Koike M., Okamoto T., Tsuda S., Imai R. A novel plant defensin-like gene of winter wheat is specifi cally induced during cold acclimation // Biochem. Biophys. Res. Commun. 2002. V. 298. P. 46–53.

16. Lobo D.S., Pereira I.B., Fragel-Madeira L. et al. Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle // Biochemistry. 2007. V. 46. P. 987–996.

17. Manners J.M. Hidden weapons of microbial destruction in plant genomes // Genome Biol. 2007. V. 8. P. 225–234.

18. Nolde S.B., Vassilevski A.A., Rogozhin E.A. et al. Disulfi destabilized helical hairpin structure of a novel antifungal peptide EcAMP1 from seeds of barnyard grass (Echinochloa crus-galli) // J. Biol. Chem. 2011. V. 286. Nо 28. Р. 25145–25153.

19. Odintsova T.I., Egorov Ts.A., Musolyamov A.Kh. et al. Seed defensins from T. kiharae and related species: genome localization of defensin-encoding genes // Biochimie. 2007. V. 89. P. 605–612.

20. Odintsova T.I., Vassilevski A.A., Slavokhotova A.A. et al. A novel antifungal hevein-type peptide from Triticum kiharae seeds with a unique 10-cysteine motif // FEBS J. 2009. V. 276. P. 4266–4275.

21. Padovan L., Scocchi M., Tossi A. Structural aspects of plant antimicrobial peptides // Curr. Protein Pept. Sci. 2010. V. 11. P. 210–219.

22. Sels J., Mathys J., De Coninck B.M. et al. Plant pathogenesis-related (PR) proteins: a focus on PR peptides // Plant Physiol. Biochem. 2008. V. 46. P. 941–950.

23. Tavares L.S., de Santos M., Viccini L.F. et al. Biotechnological potential of antimicrobial peptides from fl owers // Peptides. 2008. V. 29. P. 1842–1851.

24. Van den Bergh K.P.B., Proost P., Van Damme J. et al. Five disulfi de bridges stabilize a hevein-type antimicrobial peptide from the bark of spindle tree (Euonymus europaeus L.) // FEBS Letters. 2002. V. 530. P. 181–185.

25. Van der Weerden N.L., Lay F.T., Anderson M.A. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae // J. Biol. Chem. 2008. V. 283. P. 14445–14452.

26. Vasil I.K. Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.) // Plant Cell Rep. 2007. V. 26. P. 1133–1154.


Review

Views: 666


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)