Preview

Vavilov Journal of Genetics and Breeding

Advanced search

USE OF MOLECULAR MARKERS IN WHEAT BREEDING FOR RESISTANCE TO LEAF RUST AT THE LUKYANENKO RESEARCH INSTITUTE OF AGRICULTURE

Abstract

Wheat accessions were genotyped with molecular markers linked to wheat leaf rust resistance genes Lr9, r10, Lr19,Lr24, Lr26, Lr34, and Lr37. They included 1920 wheat plants and 46 commercial varieties bred at the Lukyanenko Institute. Basically, the analyzed varieties had the inefficient gene Lr10, poorly effi cient Lr26 and Lr34, or their combinations. The highly effi cient genes Lr9 and Lr24 were not detected. The Lr19 gene, effective in the Krasnodar region, was identified in varieties Pallada and Yara. The resistance gene Lr37 was found in variety Morozko. Within a short time, F2 and F3 plants with introgression of genes Lr9, Lr19, Lr24, Lr37 were obtained. Accessions with combinations Lr24 + Lr37, Lr24 + Lr19, Lr24 + Lr9, Lr19 + Lr37, Lr37 + Lr9, Lr19 + Lr9 were identified. Seven plants with the combination of three genes Lr37 + Lr19 + Lr9 and one with Lr37 + Lr24 + Lr9 were selected.

About the Authors

E. R. Davoyan
Lukyanenko Research Institute of Agriculture, Krasnodar, Russia
Russian Federation


L. A. Bespalova
Lukyanenko Research Institute of Agriculture, Krasnodar, Russia
Russian Federation


R. O. Davoyan
Lukyanenko Research Institute of Agriculture, Krasnodar, Russia
Russian Federation


Yu. S. Zubanova
Lukyanenko Research Institute of Agriculture, Krasnodar, Russia
Russian Federation


D. S. Mikov
Lukyanenko Research Institute of Agriculture, Krasnodar, Russia
Russian Federation


V. A. Filobok
Lukyanenko Research Institute of Agriculture, Krasnodar, Russia
Russian Federation


J. N. Khudokormova
Lukyanenko Research Institute of Agriculture, Krasnodar, Russia
Russian Federation


References

1. Аблова И.Б., Беспалова Л.А., Колесников Ф.А. и др. Принципы, методы и результаты селекции озимой пшеницы на устойчивость к болезням в Краснодарском НИИСХ им. П.П. Лукьяненко // Сб. науч. тр. Краснодарского НИИСХ. 2014. С. 48–67.

2. Беспалова Л.А., Васильев А.В., Аблова И.Б. и др. Применение молекулярных маркеров в селекции пшеницы в Краснодарском НИИСХ им. П.П. Лукьяненко // Вавилов. журн. генет. и селекции. 2012. Т. 16. № 1. С. 37–43.

3. Гультяева Е.И. Методы идентификации генов устойчивости пшеницы к бурой ржавчине с использованием ДНК-маркеров и характеристика эффективности Lr-генов. СПб.: РАСХН, отделение защиты растений, ГНУ ВНИИЗР, 2012. С. 59–60.

4. Гультяева Е.И., Баранова О.А Тенденции изменчивости популяции Puccinia triticina под влиянием выращиваемых сортов пшеницы и эффективность Lr-генов в основных зернопроизводящих регионах РФ // Технология создания и использования сортов и гибридов с групповой и комплексной устойчивостью к вредным организмам в защите растений. СПб.: РАСХН, отделение защиты растений, ГНУ ВНИИЗР, 2010. С. 26–48.

5. Леонова И.Н. Молекулярные маркеры: использование в селекции зерновых культур для идентификации, интрогрессии и пирамидирования генов // Вавилов. журн. генет. и селекции. 2013. Т. 17. № 2. С. 314–325.

6. Bonnett D.G., Rebetzke .J., Spielmeyer W. Strategies for efficient implementation of molecular markers in wheat breeding // Mol. Breeding. 2005. V. 15. P. 75–78.

7. Friebe B., Jiang J., Raupp W.J. et al. Characterization of wheatalien translocations conferring resistance to diseases and pests: current status // Euphytica. 1996. V. 91. P. 59–87.

8. Helguera M., Khan I.A., Kolmer J. et al. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines // Crop Sci. 2003. V. 43. P. 1839–1847.

9. Lagudah E.S., McFadden H., Singh R.P. et al. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat // Theor. Appl. Genet. 2006. V. 114. P. 21–30.

10. McIntosh R.A. Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in United Kingdom // Euphytica. 2001. V. 120. P. 205–218.

11. McIntosh R.A., Wellings C.R., Park R.F. Wheat rust: An atlas of resistance gene // CSIRO, Australia. 1995. Р. 234–237.

12. McIntosh R.A., Yamazaki Y., Dubcovsky J. et al. Catalogue of Gene Symbols for Wheat. 2010. Suppl. 2011, 2012. Available at http: // www.shigen.nig.ac.jp /wheat/komugi/genes/.

13. Nocente F., Fritz A.K., Moran J.L. et al. Identifi cation and molecular tagging of genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection // Euphytica. 2007. V. 155. P. 329–336.

14. Plaschke J., Ganal M.W., Roder M.S. Deteсtion of genetic diversity in closely related bread wheat using microsatellite markers // Theor. Appl. Genet. 1995. V. 91. P. 1001–1007.

15. Prins R., Groenewald J.Z., Marais G.F. et al. AFLP STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat // Theor. Appl. Genet. 2001. V. 91. P. 618–624.

16. Prubhu K.W., Tiwary R. Marker assisted breeding in wheat: rust and biotic stresses-I // ICAR-ACIAR Planning Workshop 11–13 Oct. 2007 NASC, New Delhi 2007 (http://aciar.gov.au./Files/node/3871/Session%20IV-Prabhu%20Tiwari.pdf.)

17. Schachermayer G., Siedler H., Gale M.D. Identifi cation and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat // Theor. Appl. Genet. 1994. V. 88. P. 110–115.

18. Schachermayer G., Messemer M., Feuillet C. et al. Identifcation of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat // Theor. Appl. Genet. 1995. V. 90. P. 982–990.

19. Schachermayer G., Feuillet C., Keller B. Molecular markers for detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds // Mol. Breeding. 1997. V. 3. P. 65–74.

20. Singh R.P., Huerta-Espino J., Wiliam M. Genetics and breeding for durable resistance to leaf and stripe rusts of wheat // Increasing Wheat Production in Central Asia through Science and Intern. cooperation: Proc. 1st Central Asian Wheat Conf. Almaty, Kazakhstan, 10–13 June, 2003. Almaty, 2003. P. 127–132.

21. Singh D., Franks C.D., Huang L. et al. Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS // Theor. Appl. Genet. 2004. V. 108. P. 586–591.

22. Slikova S., Gregova E., Bartos P. Development of wheat genotypes possessing a combination of leaf rust resistance genes Lr19 and Lr24 // Plant Soil Environ. 2004. V. 50. No. 10. P. 434–438.

23. Sydenham S.L. Pyramiding wheat rust resistance genes using marker-assisted selection. Master′s theses, University of Free State, Republic of South Africa. 2007. Available at http://etd.uovs.ac.za./ETD-db//theses/available/etd-02052009-140213/iunrestricted/Sydenham S.L.pdf.

24. Sivasamy M., Vinod, Tiwari S. et al. Introgression of useful linked genes for resistance to stem rust, leaf rust and powdery mildew and their molecular validation in wheat (Triticum aestivum L.) // Indian J. Genet. 2009. V. 69. P. 17–27.

25. Timonova E.M., Leonova I.N., Roder M.S., Salina E.A. Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome // Mol. Breed. 2013. V. 31. P. 123–136.

26. Vida G., Gal M., Uhrin A. et al. Molecular markers for the identifi cation of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance // Euphytica. 2009. V. 170. P. 67–76.

27. Weng Y. et al. PCR-based markers for detection of different sources 1AL.1RS and 1BL.1RS wheat–rye translocation in wheat background // Plant Breeding. 2007. V. 126.


Review

Views: 764


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)