Preview

Vavilov Journal of Genetics and Breeding

Advanced search

MAPPING OF THE LOCI CONTROLLING THE RESISTANCE TO PYRENOPHORA TERES F. TERES AND COCHLIOBOLUS SATIVUS IN TWO DOUBLE HAPLOID BARLEY POPULATIONS

Abstract

Net blotch of barley (Hordeum vulgare L.), caused by Pyrenophora teres f. teres, and spot blotch, caused by Cochliobolus sativus, are the most widespread and harmful diseases in the geographic range of the crop. Barley breeding for resistance to these diseases should employ a large genetic diversity. The 11_11067 SNP marker was revealed on chromosome 6H position 58 cM in double haploid (DH) population A developed by crossing of the Ethiopian accession c-23874, highly resistant to P. teres f. teres, to the susceptible Pirkka cultivar. It was reliably (р < 0.05) associated with resistance to three P. teres f. teres isolates. In population B (Zernogradsky 813 (MR to C. sativus) × Ranniy 1 (MR to P. teres f. teres), 11 QTLs controlling resistance to 12 P. teres f. teres isolates were found on all barley chromosomes and 14 QTLs for resistance to 12 C. sativus isolates, on all chromosomes except for 4H. For both pathogens, the revealed QTLs were shown to be isolate-specific. The majority of the loci detected were mapped in the same intervals between SNP markers where QTLs controlling resistance to P. teres f. teres and C. sativus had been found by other scientists. Four novel QTLs controlling resistance to P. teres f. teres were found on chromosomes 1H, 4H, and 5H. Five novel QTLs associated with resistance to C. sativus were found on chromosomes 2Н, 3Н, 5Н, and 6Н in DH population B.

About the Authors

O. S. Afanasenko
All-Russia Research Institute for Plant Protection, Saint Petersburg, Russia
Russian Federation


A. V. Koziakov
All-Russia Research Institute for Plant Protection, Saint Petersburg, Russia
Russian Federation


P. Hedlay
The James Hutton Institute, Dundee, Scotland UK
United Kingdom


N. M. Lashina
All-Russia Research Institute for Plant Protection, Saint Petersburg, Russia
Russian Federation


A. V. Anisimova
All-Russia Research Institute for Plant Protection, Saint Petersburg, Russia
Russian Federation


O. Manninen
Boreal, Jokioinen, Finland
Finland


M. Jalli
MTT Agrifood Research Finland, Jokioinen
Finland


E. K. Potokina
Vavilov Institute of Plant Industry (VIR), St. Petersburg, Russia
Russian Federation


References

1. Афанасенко О.С. Лабораторный метод оценки устойчивости сортообразцов ячменя к возбудителю сетчатого гельминтоспориоза // С.-х. биология. 1977. T. 12. № 2. C. 297–299.

2. Афанасенко О.С., Зубкович А.А., Макарова И.Г. Генетический контроль устойчивости образцов ячменя к штаммам Pyrenophora teres Drechs. // Генетика. 1999. Т. 35. № 3. С. 336–340.

3. Афанасенко О.С., Левитин М.М. Структура популяций возбудителя сетчатой пятнистости ячменя по признаку вирулентности. I. Идентификация рас // Микол. и фитопатология. 1979. Т. 13. Вып. 3. С. 230–234.

4. Афанасенко О.С., Мироненко Н.В., Анисимова А.В., Лашина Н.М., Радюкевич Т.Н., Лоскутов И.Г., Новожилов К.В. Методологическое обеспечение селекции ячменя на устойчивость к пятнистостям листьев // Технологии создания и использования сортов и гибридов с групповой и комплексной устойчивостью к вредным организмам в защите растений. 2010. С. 217–228.

5. Афанасенко О.С., Новожилов К.В. Проблемы рационального использования генетических ресурсов устойчивости растений к болезням // Экол. генетика. 2009. Т. 7. № 2. С. 38–43.

6. Васильев А.В., Беспалова Л.А. Первые шаги по применению маркер-опосредованного отбора в селекции сортов пшеницы в Краснодарском НИИСХ им. П.П. Лукьяненко // XI Молодежная конф. «Биотехнология в растениеводстве, животноводстве и ветеринарии». 2011. C. 19–20.

7. Гультяева Е.И., Волкова Г.В. Идентификация генов устойчивости к бурой ржавчине у сортов пшеницы с использованием молекулярных маркеров // Вестн. защиты растений. 2009. № 3. C. 32–36.

8. Гультяева Е.И., Канюка И.А., Алпатьева Н.В., Баранова О.А., Дмитриев А.П., Павлюшин В.А. Молекулярные подходы в идентификации генов устойчивости к бурой ржавчине у российских сортов пшеницы // Докл. РАСХН. 2009. № 5. C. 23–26.

9. Дьяков Ю.Т., Озерецковская О.Л., Джавахия В.Г., Багирова С.Ф. Общая и молекулярная фитопатология. М.: Об-во фитопатологов, 2001. 302 с.

10. Крупин П.Ю. Молекулярно-цитогенетическая характеристика коллекции промежуточных пшенично-пырейных гибридов: Автореф. ... канд. наук. М.: Всерос. науч.-исслед. ин-т сельскохоз. биотехнологии РАСХН, 2011. 18 с.

11. Лапочкина И.Ф., Гайнуллин Н.Р., Дженин С.В., Руденко М.И., Макарова И.Ю., Иорданская И.В., Кызласов В.Г., Коваленко Е.Д., Жемчужина А.И. Использование молекулярных маркеров в передаче эффективных генов устойчивости от новых доноров в сорта мягкой пшеницы // Матер. конф. РАСХН-РФФИ. 2009. C. 70–73.

12. Михайлова Л.А., Афанасенко О.С. Применение отсеченных листьев в исследованиях устойчивости злаков к болезням // Микология и фитопатология. 2005. № 6. C. 100–112.

13. Тырышкин Л.Г., Гультяева Е.И., Алпатьева Н.В. Идентификация эффективных генов устойчивости пшеницы Triticum aestivum к бурой ржавчине с помощью STS маркеров // Генетика. 2006. Т. 42. № 6. C. 812–817.

14. Afanasenko О., Jalli M., Pinnschmidt H., Filatova O., Platz G. Development of an international standard set of barley differential genotypes for Pyrenophora teres f. teres // Plant Pathol. 2009. V. 58. P. 665–676.

15. Abu Qamar M., Liu Z.H., Faris J.D., Chao S., Edwards M.C., Lai Z., Franckowiak J.D., Friesen T.L. A region of barley chromosome 6H harbors multiple major genes associated with net type net blotch resistance // Theor. Appl. Genet. 2008. V. 117. No. 8. P. 1261–1270.

16. Arru L., Francia E., Pecchioni N. Isolate-specifi c QTLs of resistance to leaf stripe (Pyrenophora graminea) in the Steptoe × Morex spring barley cross // Theor. Appl. Genet. 2003. V. 106. P. 668–675.

17. Cakir M., Gupta S., Li C., Hayden M., Mather D.E., Ablett G.A., Platz G.J., Broughton S., Chalmers K.J.,

18. Loughman R., Jones M.G.K., Lance R.C.M. Genetic mapping and QTL analysis of disease resistance traits in

19. the barley population Baudin × AC Metcalfe // Crop and Pasture Science. 2011. V. 62. Nо. 2. P. 152–161.

20. Cakir M., Gupta S., Platz G.J., Ablett G.A., Loughman R., Embiri L.C., Poulsen D., Li C.D., Lance R.C.M., Galwey N.W., Jones M.G.K., Appels R. Mapping and validation of the genes for resistance to Pyrenophora teres f. teres in barley (Hordeum vulgare L.) // Aust. J. Agric. Res. 2003. V. 54. P. 1369–1377.

21. Close T.J., Bhat P.R., Lonardi S., Wu Y., Rostoks N., Ramsay L., Druka A., Stein N., Svensson J.T., Wanamaker S., Bozdag S., Roose M.L., Moscou M.J., Chao S., Varshney R.K., Szűcs P., Sato K., Hayes P.M., Matthews D.E., Kleinhofs A., Muehlbauer G.J., DeYoung J., Marshall D.F., Madishetty K., Fenton R.D., Condamine P., Graner A., Waugh R. Development and implementation of high-throughput SNP genotyping in barley // BMC Genomics. 2009. V. 10. P. 582.

22. Emebiri L.C., Platz G., Moody D.B. Disease resistance genes in a doubled haploid population of two-rowed barley segregating for malting quality attributes // Aust. J. Agric. Res. 2005. V. 56 (1). P. 49–56.

23. Fetch T.G.J., Steffenson B.J. Rating scales for assessing infection responses of barley infected with Cochliobolus sativus // Plant Disease. 1999. V. 83. P. 213–217.

24. Grewal T.S., Rossnagel B.G., Pozniak C.J., Scoles G.J. Mapping quantitative trait loci associated with barley net blotch resistance // Theor. Appl. Genet. 2008. V. 116. P. 529–539.

25. Grewal T.S., Rossnagel B.G., Scoles G.J. Validation of molecular markers associated with net blotch resistance and their utilization in barley breeding // Crop Sci. 2010. V. 50. P. 177–184.

26. Grewal T.S., Rossnagel B.G., Scoles G.J. Mapping quantitative trait loci associated with spot blotch and net blotch resistance in a doubled-haploid barley population // Mol. Breed. 2012. V. 30. P. 267–279.

27. Gupta S., Li C.D., Loughman R., Cakir M., Platz G., Westcott S., Bradley J., Broughton S., Lance R. Quantitative trait loci and epistatic interactions in barley conferring resistance to net type net blotch (Pyrenophora teres f. teres) isolates // Plant Breed. 2010. V. 4. P. 268–362.

28. Gupta S., Li C., Loughman R., Cakir M., Westcott S., Lance R. Identifying genetic complexity of 6H locus in barley conferring resistance to Pyrenophora teres f. teres // Plant Breed. 2011. V. 130. P. 423–429.

29. Gutiérrez L., Berberian N., Capettini F. et al. Genome-wide association mapping identifi es disease-resistance QTLs in barley germplasm from Latin America // Advance in Barley Sciences. Proc. of 11th Intern. Barley Genet. Symp. 2013. P. 209–215.

30. Hickey L.H., Lawson W., Platz G.J., Dieters M., Arief V.N., Germán S., Fletcher S., Park R.F., Singh D., Pereyra S., Franckowiak J. Mapping Rph20: A gene conferring adult plant resistance to Puccinia hordei in barley // Theor. Appl. Genet. 2011. V. 123. P. 1–25.

31. Ho K.M., Tekauz A., Choo T.M., Martin R.A. Genetic studies on net blotch resistance in barley cross // Can. J. Plant Sci. 1996. V. 76. P. 715–719.

32. Khan T.N., Tekauz A. Occurence and pathogenicity of Drechs-lera teres isolates causing spot type symptoms on barley in Western Australia // Plant Dis. 1982. V. 66. P. 423–425.

33. Kosambi D.D. The estimation of map distances from recombination values // Ann. Eu-gen. 1944. V. 12. P. 172–175.

34. König J., Perovic D., Kopahnke D., Ordon F. Mapping seedling resistance to net form of net blotch (Pyrenophora teres f. teres) in barley using detached leaf assay // Plant Breed. 2014. V. 133. 3. P. 356–365.

35. Lander E., Green P., Abrahamson J., Barlow A., Daly M., Lincoln S., Newburg L. Mapmaker: an interactive

36. computer package for constructing primary genetic linkage maps of experimental and natural populations // Genomics. 1987. No. 1. P. 174–181.

37. Le Gouis J., Devaux P., Werner K., Hariri D., Bahrman N., Beghin D., Ordon F. Rym15 from the Japanese cultivar Chikurin Ibaraki 1 is a new barley mild mosaic virus (BaMMV) resistance gene mapped on chromosome 6H // Theor. Appl. Genet. 2004. V. 108. No. 8. P. 1521–1525.

38. Ma Z.Q., Lapitan N.L.V., Steffenson B. QTL mapping of net blotch resistance genes in a doubled-haploid population of six-rowed barley // Euphytica. 2004. V. 137. P. 291–296.

39. Manninen О. Optimizing anther culture for barley breeding // Agr. Food Sci. Finland. 1997. V. 6. P. 389–398.

40. Manninen O.M., Jalli M., Kalendar R., Schulman A., Afanasenko O., Robinson J. Mapping of major spot-type and net-type net blotch resistance genes in the Ethiopian barley (Hordeum vulgare) line CI 9819 // Genome. 2006. V. 49. P. 1564–1571.

41. Marcel T., Aghnoum R., Durand J., Varshney R.K., Niks R.E. Dissection of the barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL // Mol. Plant Microbe Interact. 2007. V. 20. No. 12. P. 1604–1615.

42. Meldrum S.I., Platz G., Ogle H.J. Pathotypes of Cochliobolus sativus on barley in Australia // Aust. Plant Pathol. 2004. V. 33. P. 109–114.

43. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962. V. 15. No. 3. P. 473–497.

44. Raman H., Venkatanagappa S., Rehman A., Rehman A., O’Bree B., Read B. Graphical genotyping of barley using molecular markers linked with malting quality, disease resistance and aluminium tolerance // Barley Tech. Cereal Chem. 2003. P. 246–249.

45. Rostoks N., Ramsay L., MacKenzie K., Cardle L., Bhat P.R., Roose M.L., Svensson J.T., Stein N., Varshney R.K., Marshall D.F., Graner A., Clos T.J., Waugh R. Recent history of artifi cial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties // Proc. Natl Acad. Sci. USA. 2006. V. 103. P. 18656–18661.

46. Roy J.K., Smith K.P., Muehlbauer G.J., Chao S., Close T.J., Steffenson B.J. Associating mapping of spot blotch resistance in wild barley // Mol. Breed. 2010. V. 26. P. 243–256.

47. Saghai-Maroof M.A., Soliman K.M., Jorgenson R.A., Jorgenson R.A., Allard R.W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics // Proc. Natl Acad. Sci. USA. 1984. V. 81. P. 8014–8018.

48. Serenius M. Population structure of Pyrenophora teres the causal agent of net blitch of barley // Agrifood Res. Rep. 2006. V. 78. 60 p.

49. Spaner D.S.L., Falak T.M., Choo I., Legge K.G., Briggs W.G., Falk D.E., Ullrich S.E., Tinker N.A., Steffenson B.J., Mather D.E. Mapping of disease resistance loci in barley on the basis of visual assessment of naturally occurring symptoms // Crop Sci. 1998. V. 38. P. 843–850.

50. Steffenson B.J., Webster R.K. Pathotype diversity of Pyrenophora teres f. teres on barley // Phytopathology. 1992. V. 82. P. 170–177.

51. Steffenson B.J., Hayes P.M., Kleinhofs A. Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley // Theor. Appl. Genet. 1996. V. 92. P. 552–558.

52. Tekauz A. A numerical scale to classify reactions of barley to Pyrenophora teres // Can. J. Plant Pathol. 1985. V. 7. P. 181–183.

53. Tuohy J.M., Jalli M., Cooke B.M., Sullivan E.O. Pathogenic variation in populations Dreschslera teres f. teres and D. teres f. maculata and differences in host cultivar responses // Eur. J. Plant Pathol. 2006. V. 116. No. 3. P. 177–185.

54. Valjavec-Gratian M., Steffenson B.J. Pathotypes of Cochliobolus sativus on barley in North Dakota // Plant Dis. 1997. V. 81. P. 1275–1278.

55. Wagner C., Schweizer G., Kramer M., Dhmer-Badani A.G., Ordon F., Friedt W. The complex quantitative barley – Rhynchosporium secalis interaction: newly identifi ed QTL may represent already known resistance genes // Theor. Appl. Genet. 2008. V. 118. P. 113–122.

56. Zhou H., Steffenson B.J. Association mapping of septoria speckled leaf blotch resistance in US barley breeding germplasm // Phytopathology. 2013. V. 103. P. 600–609.


Review

Views: 765


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)