Современные аспекты селекции гибридов сахарной свеклы (Beta vulgaris L.)
https://doi.org/10.18699/VJ21.043
Аннотация
Показаны высокая эффективность культивирования неоплодотворенных семязачатков растений сахарной свеклы и получение гаплоидных регенерантов (микроклонов) опылителей – закрепителей стерильности О-типа и МС-форм компонентов гибрида сахарной свеклы РМС 120. Предлагается технологический метод, который способствует уменьшению времени создания нового выровненного исходного материала, что ведет к ускорению селекционного процесса. Идентификация гаплоидных регенерантов со стерильной цитоплазмой из исходных популяций имеет важное теоретическое и практическое значение для селекции, так как облегчает задачу создания гомозиготных линий с цитоплазматической мужской стерильностью и высокопродуктивных гибридов на стерильной основе. По результатам проведенного молекулярно-генетического анализа, в митохондриальном геноме гаплоидных растений-регенерантов обнаружен ранее не описанный в литературе однонуклеотидный полиморфизм, позволивший идентифицировать данные микроклоны как фертильные и стерильные формы. Установлено, что ДНК-маркеры митохондриального генома сахарной свеклы, относящиеся к семейству минисателлитов TR (TR1 и TR3), дают возможность с высокой эффективностью выявлять гаплоидные микроклональные растения МСи О-типа. Установлена информативность маркера OP-S4 для определения раздельноплодных форм. При помощи метода культуры in vitro получены дигаплоидные линии (DH) мужско-стерильной формы и закрепителя стерильности О-типа гибрида сахарной свеклы РМС 120. Линии характеризуются высокой степенью выравненности по биоморфологическим признакам, что было подтверждено в полевых условиях.
Об авторах
С. Д. КаракотовРоссия
г. Щелково, Московская область
И. В. Апасов
Россия
пос. ВНИИСС, Рамонский район, Воронежская область
А. А. Налбандян
Россия
пос. ВНИИСС, Рамонский район, Воронежская область
Е. Н. Васильченко
Россия
пос. ВНИИСС, Рамонский район, Воронежская область
Т. П. Федулова
Россия
пос. ВНИИСС, Рамонский район, Воронежская область
Список литературы
1. Amiri R., Sarafraz E., Sadat Noori S.A., Norouzi P., Seyedmohammadi N. A new molecular marker linked to gene for monogermity in sugar beet (Beta vulgaris L.). Rom. Agric. Res. 2011;28:95-101.
2. Arakawa T., Uchiyama D., Ohgami T., Ohgami R., Murata T., Honma Y. A fertility-restoring genotype of beet (Beta vulgaris L.) is composed of a weak restorer-of-fertility gene and a modifier gene tightly linked to the Rf1 locus. PLoS One. 2018;13(6):e0198409. DOI 10.1371/journal.pone.0198409.
3. Bordonos M.G. Features of monogermity inheritance in first-generation sugar beet hybrids. Vesti Sel’skokhozyaystvennoy Nauki = Agricultural Science News. 1966;12:60-61. (in Russian)
4. Bragin A.G., Ivanov M.K., Fedoseeva L.A., Dymshits G.M. Analysis of mitochondrial DNA heteroplasmy of fertile and male-sterile sugar beet plants (Beta vulgaris). Russ. J. Genet. Appl. Res. 2012;2(1): 53-57. DOI 10.1134/S2079059712010030.
5. Butenko R.G. Biology of Higher Plant Cells in vitro and Biotechnology Based on Them. Moscow: FBK-PRESS Publ., 1999. (in Russian)
6. Chen J.F., Cui L., Malik A.A., Mbira K.G. In vitro haploid and diploid production via unfertilized ovule culture. Plant Cell Tissue Cult. 2011;104(3):311-319. DOI 10.1007/s11240-010-9874-6.
7. Chen L., Liu Y. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014;65:579-606. DOI 10.1146/annurev-arplant050213-040119.
8. Cousin A., Heel K., Cowling W., Nelson M. An efficient high-throughput flow cytometric method for estimating DNA ploidy level in plants. Cytometry. 2009;75A:1015-1019.
9. Dubrovnaia O.V., Lial’ko I.I., Pariĭ F.N. Genetic control of morphological characters of the beet (Beta vulgaris L.). Tsitol. Genet. 2003; 37(4):57-72. (in Russian)
10. Dunwell J.M. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 2010;8:377-424. DOI 10.1111/j.1467-7652. 2009.00498.x.
11. Hemayati S., Taleghani D., Shahmoradi Sh. Effects of steckling weight and planting density on sugar beet (Beta vulgaris L.) monogerm seed yield and qualitative traits. Pak. J. Biol. Sci. 2008;11(2):226-231.
12. Katoh K., Standley D. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics. 2016;32(13):1933-1942. DOI 10.1093/bioinformatics/btw108.
13. Kikindonov G., Kikindonov Tz., Enchev S. Economical qualities of crosses between doubled haploid sugar beet lines. Agric. Sci. Тechnol. 2016;8(2):107-110. DOI 10.15547/ast.2016.02.018.
14. Kolomiyets O.K. Breeding methods and protocols used to develop sugar beet varieties with monogerm seeds in the Belotserkovskaya Breeding Station. In: Monogerm Sugar Beet. Moscow: USSR Ministry of Agriculture, 1960;22-45. (in Russian)
15.
16. Liu Q., Liu L., Luo Ch., Cheng D., Dai C., Shi Sh., Liang N., Liu T. Analysis of cytoplasm polymorphism on the TR2 locus of mitochondria genome in leaf beet line SK-5. Adv. Biol. Sci. Res. 2017;4: 292-296.
17. Maletskiy S.I., Veprev S.G., Shavrukov Yu.N. Genetic Control of Sugar Beet Reproduction. Novosibirsk: Nauka Publ., 1991. (in Russian) Matsuhira H., Kagami H., Kurata M., Kitazaki K., Matsunaga M.,
18. Hamaguchi Y., Hagihara E., Ueda M., Harada M., Muramatsu A., Yui-Kurino R., Taguchi K., Tamagake H., Mikami T., Kubo T. Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics. 2012;192:1347-1358. DOI 10.1534/genetics.112.145409.
19. Nagamine T., Catty G., Ford-Lloyd B. Phenotypic polymorphism and allele differentiation of isozymes in fodder beet, multigerm sugar beet and monogerm sugar beet. Theor. Appl. Genet. 1989;77(5): 711-720.
20. Nishizawa S., Kubo T., Mikami T. Variable number of tandem repeat loci in the mitochondrial genomes of beets. Curr. Genet. 2000;37: 34-38. DOI 10.1007/s002940050005.
21. Oshevnev V.P., Gribanova N.P., Vasilchenko E.N., Berdnikov R.V. Stabilization of the monogermity trait when developing sugar beet hybrid components. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk = Izvestiya of Samara Scientifi Center of the Russian Academy of Sciences. 2018;20(2-2):186-191. (in Russian)
22. Popov A.V. The results of Yaltushkov Breeding Station work on the development and study of monogerm sugar beet. In: Monogerm Sugar Beet. Moscow: USSR Ministry of Agriculture, 1960;45-73. (in Russian)
23. Savitsky V.F. A genetic study of monogerm and multigerm character in beet. Proc. Am. Soc. Sug. Beet Technol. 1952;7:331-338.
24. Schumacher K., Schondelmaier J., Barzen E., Steinrlicken G., Borchard D., Weber W.E., Jung C., Salamini F. Combining different linkage maps in sugar beet (Bela vulgaris L.) to make one map. Plant Breed. 1997;116:23-38.
25. Shavrukov Y. Localization of new monogerm and late-bolting genes in using RFLP markers. J. Sugar Beet Res. 2000;37(4):107-115.
26. Soranzo N., Alia R., Provan J. Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol. Ecol. 2003;9(9):1205-1211. DOI 10.1046/j.1365-294x.2000.00994.x.
27. Xia H., Zhao W., Shi Y., Wang X., Wang B. Microhomologies are associated with tandem duplications and structural variation in plant mitochondrial genomes. Genome Biol. Evol. 2020;12(11):1965-1974. DOI 10.1093/gbe/evaa/172.
28. Zhuzhzhalova T.P., Kolesnikova E.O., Vasilchenko E.N., Cherkasova N.N. Biotechnological methods as a tool for efficient sugar beet breeding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(1):40-47. DOI 10.18699/VJ20.593. (in Russian)