Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Modern issues of sugar beet (Beta vulgaris L.) hybrid breeding

https://doi.org/10.18699/VJ21.043

Abstract

High efficiency of the cultivation of unfertilized sugar beet ovules and preparation of haploid regenerants (microclones) of pollinators – maintainers of О-type sterility and MS forms of the RMS 120 hybrid components has been shown. A technological method that accelerates the creation of new uniform starting material is proposed. It speeds up the breeding process two to threefold. The identification of haploid regenerants with sterile cytoplasm in initial populations is of great theoretical and practical importance for breeding, as it facilitates the production of homozygous lines with cytoplasmic male sterility and high-performance hybrids on sterile basis. As shown by molecular analysis, a single-nucleotide polymorphism never reported hitherto is present in the mitochondrial genome of the haploid plant regenerants. It allows identification of microclones as fertile and sterile forms. It has been found that DNA markers of the sugar beet mitochondrial genome belonging to the TR minisatellite family (TR1 and TR3) enable reliable enough identification of haploid microclonal plants as MSor O-type forms. Fragments of 1000 bp in length have been detected in monogenic forms in the analysis of 11 sugar beet plants cultured in vitro by PCR with the OP-S4 random RAPD primer. Testing of the OP-S4 marker’s being in the same linkage group as the genes responsible for expression of the economically valuable trait monogermity demonstrates its relative reliability. By the proposed method, dihaploid lines (DH) of the male-sterile form and the О-type sterility maintainer of the RMS 120 sugar beet hybrid have been obtained in in vitro culture. These lines are highly uniform in biomorphological traits, as proven under field conditions.

About the Authors

S. D. Karakotov
Shchelkovo Agrokhim Company
Russian Federation

Shchelkovo, Moscow region



I. V. Apasov
The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar
Russian Federation

vil. VNIISS, Ramonsky district, Voronezh region



A. A. Nalbandyan
The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar
Russian Federation

vil. VNIISS, Ramonsky district, Voronezh region



E. N. Vasilchenko
The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar
Russian Federation

vil. VNIISS, Ramonsky district, Voronezh region



T. P. Fedulova
The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar
Russian Federation

vil. VNIISS, Ramonsky district, Voronezh region



References

1. Amiri R., Sarafraz E., Sadat Noori S.A., Norouzi P., Seyedmohammadi N. A new molecular marker linked to gene for monogermity in sugar beet (Beta vulgaris L.). Rom. Agric. Res. 2011;28:95-101.

2. Arakawa T., Uchiyama D., Ohgami T., Ohgami R., Murata T., Honma Y. A fertility-restoring genotype of beet (Beta vulgaris L.) is composed of a weak restorer-of-fertility gene and a modifier gene tightly linked to the Rf1 locus. PLoS One. 2018;13(6):e0198409. DOI 10.1371/journal.pone.0198409.

3. Bordonos M.G. Features of monogermity inheritance in first-generation sugar beet hybrids. Vesti Sel’skokhozyaystvennoy Nauki = Agricultural Science News. 1966;12:60-61. (in Russian)

4. Bragin A.G., Ivanov M.K., Fedoseeva L.A., Dymshits G.M. Analysis of mitochondrial DNA heteroplasmy of fertile and male-sterile sugar beet plants (Beta vulgaris). Russ. J. Genet. Appl. Res. 2012;2(1): 53-57. DOI 10.1134/S2079059712010030.

5. Butenko R.G. Biology of Higher Plant Cells in vitro and Biotechnology Based on Them. Moscow: FBK-PRESS Publ., 1999. (in Russian)

6. Chen J.F., Cui L., Malik A.A., Mbira K.G. In vitro haploid and diploid production via unfertilized ovule culture. Plant Cell Tissue Cult. 2011;104(3):311-319. DOI 10.1007/s11240-010-9874-6.

7. Chen L., Liu Y. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014;65:579-606. DOI 10.1146/annurev-arplant050213-040119.

8. Cousin A., Heel K., Cowling W., Nelson M. An efficient high-throughput flow cytometric method for estimating DNA ploidy level in plants. Cytometry. 2009;75A:1015-1019.

9. Dubrovnaia O.V., Lial’ko I.I., Pariĭ F.N. Genetic control of morphological characters of the beet (Beta vulgaris L.). Tsitol. Genet. 2003; 37(4):57-72. (in Russian)

10. Dunwell J.M. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J. 2010;8:377-424. DOI 10.1111/j.1467-7652. 2009.00498.x.

11. Hemayati S., Taleghani D., Shahmoradi Sh. Effects of steckling weight and planting density on sugar beet (Beta vulgaris L.) monogerm seed yield and qualitative traits. Pak. J. Biol. Sci. 2008;11(2):226-231.

12. Katoh K., Standley D. A simple method to control over-alignment in the MAFFT multiple sequence alignment program. Bioinformatics. 2016;32(13):1933-1942. DOI 10.1093/bioinformatics/btw108.

13. Kikindonov G., Kikindonov Tz., Enchev S. Economical qualities of crosses between doubled haploid sugar beet lines. Agric. Sci. Тechnol. 2016;8(2):107-110. DOI 10.15547/ast.2016.02.018.

14. Kolomiyets O.K. Breeding methods and protocols used to develop sugar beet varieties with monogerm seeds in the Belotserkovskaya Breeding Station. In: Monogerm Sugar Beet. Moscow: USSR Ministry of Agriculture, 1960;22-45. (in Russian)

15.

16. Liu Q., Liu L., Luo Ch., Cheng D., Dai C., Shi Sh., Liang N., Liu T. Analysis of cytoplasm polymorphism on the TR2 locus of mitochondria genome in leaf beet line SK-5. Adv. Biol. Sci. Res. 2017;4: 292-296.

17. Maletskiy S.I., Veprev S.G., Shavrukov Yu.N. Genetic Control of Sugar Beet Reproduction. Novosibirsk: Nauka Publ., 1991. (in Russian) Matsuhira H., Kagami H., Kurata M., Kitazaki K., Matsunaga M.,

18. Hamaguchi Y., Hagihara E., Ueda M., Harada M., Muramatsu A., Yui-Kurino R., Taguchi K., Tamagake H., Mikami T., Kubo T. Unusual and typical features of a novel restorer-of-fertility gene of sugar beet (Beta vulgaris L.). Genetics. 2012;192:1347-1358. DOI 10.1534/genetics.112.145409.

19. Nagamine T., Catty G., Ford-Lloyd B. Phenotypic polymorphism and allele differentiation of isozymes in fodder beet, multigerm sugar beet and monogerm sugar beet. Theor. Appl. Genet. 1989;77(5): 711-720.

20. Nishizawa S., Kubo T., Mikami T. Variable number of tandem repeat loci in the mitochondrial genomes of beets. Curr. Genet. 2000;37: 34-38. DOI 10.1007/s002940050005.

21. Oshevnev V.P., Gribanova N.P., Vasilchenko E.N., Berdnikov R.V. Stabilization of the monogermity trait when developing sugar beet hybrid components. Izvestiya Samarskogo Nauchnogo Tsentra Rossiyskoy Akademii Nauk = Izvestiya of Samara Scientifi Center of the Russian Academy of Sciences. 2018;20(2-2):186-191. (in Russian)

22. Popov A.V. The results of Yaltushkov Breeding Station work on the development and study of monogerm sugar beet. In: Monogerm Sugar Beet. Moscow: USSR Ministry of Agriculture, 1960;45-73. (in Russian)

23. Savitsky V.F. A genetic study of monogerm and multigerm character in beet. Proc. Am. Soc. Sug. Beet Technol. 1952;7:331-338.

24. Schumacher K., Schondelmaier J., Barzen E., Steinrlicken G., Borchard D., Weber W.E., Jung C., Salamini F. Combining different linkage maps in sugar beet (Bela vulgaris L.) to make one map. Plant Breed. 1997;116:23-38.

25. Shavrukov Y. Localization of new monogerm and late-bolting genes in using RFLP markers. J. Sugar Beet Res. 2000;37(4):107-115.

26. Soranzo N., Alia R., Provan J. Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol. Ecol. 2003;9(9):1205-1211. DOI 10.1046/j.1365-294x.2000.00994.x.

27. Xia H., Zhao W., Shi Y., Wang X., Wang B. Microhomologies are associated with tandem duplications and structural variation in plant mitochondrial genomes. Genome Biol. Evol. 2020;12(11):1965-1974. DOI 10.1093/gbe/evaa/172.

28. Zhuzhzhalova T.P., Kolesnikova E.O., Vasilchenko E.N., Cherkasova N.N. Biotechnological methods as a tool for efficient sugar beet breeding. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(1):40-47. DOI 10.18699/VJ20.593. (in Russian)


Review

Views: 1015


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)