THE KEY ROLE OF PIN PROTEINS IN AUXIN TRANSPORT IN ARABIDOPSIS THALIANA ROOTS
Abstract
The phytohormone auxin is the key factor in plant morphogenesis. Being unevenly distributed in plant tissues, it forms gradients and concentration maxim а, according to which cells grow, divide, and differentiate. The family of PIN-FORMED (PIN) proteins, transmembrane transporters of auxin, play the key role in the formation of auxin gradients. The plant root is the most appropriate model for studying the regulation of morphogenesis, because of its relatively simple cellular organization. This review concerns the expression patterns of PIN transporters and their contribution to auxin distribution in the root of Arabidopsis. Mathematical models that prove the relationship between the expression pattern of PIN proteins and auxin distribution in the root meristem are discussed.
About the Authors
V. V. KovrizshnykhRussian Federation
N. A. Omelyanchuk
Russian Federation
T. Pasternak
Germany
V. V. Mironova
Russian Federation
References
1. Band L.R., Wells D.M., Fozard J. et al. Systems analysis of auxin transport in the Arabidopsis root apex // Plant Cell. 2014. V. 26. Nо. 3. P. 862–875.
2. Benfey P.N., Schiefelbein J.W. Getting to the root of plant development: the genetics of Arabidopsis root formation // Trends Genet. 1994. V. 10. Nо. 3. P. 84–88.
3. Bennett M.J., Marchant A., Green H.G. et al. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism // Science. 1996. V. 273. P. 948–950.
4. Blakeslee J.J., Ann W., Angus P. et al. MDR/PGP auxin transport proteins and endocytic cycling // Curr. Opin. Plant Biol. 2005. V. 8. Nо. 5. P. 494–500.
5. Blilou I., Xu J., Wildwater M., Willemsen V. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots // Nature. 2005. V. 433. P. 39–44.
6. Brunoud G., Wells D.M., Oliva M. et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution // Nature. 2012. V. 482. P. 103–106.
7. De Smet I., Tetsumura T., De Rybel B. et al. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis // Development. 2007. V. 134. Nо. 4. P. 681–690.
8. Dhonukshe P., Huang F., Galvan-Ampudia C.S. et al. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling // Development. 2010. V. 137. Nо. 19. P. 3245–3255.
9. Dolan L., Janmaat K., Willemsen V. et al. Cellular organisation of the Arabidopsis thaliana root // Development. 1993. V. 119. Nо. 1. P. 71–84.
10. Friml J., Benkova E., Blilou I. et al. AtPIN4 mediates sinkdriven auxin gradients and root patterning in Arabidopsis // Cell. 2002a. V. 108. Nо. 5. P. 661–673.
11. Friml J., Wiśniewska J., Benková E. et al. Lateral relocation of auxin effl ux regulator PIN3 mediates tropism in Arabidopsis // Nature. 2002b. V. 415. P. 806–809.
12. Friml J., Vieten A., Sauer M. et al. Effl ux-dependent auxin gradients establish the apical-basal axis of Arabidopsis // Nature. 2003. V. 426. P. 147–153.
13. Geisler M., Murphy A.S. The ABC of auxin transport: the role of p-glycoproteins in plant development // FEBS Lett. 2006. V. 580. Nо. 4. P. 1094–1102.
14. Geldner N., Friml J., Stierhof Y.D. et al. Auxin transport inhibitors block PIN1 cycling and vesicle traffi cking // Nature. 2001. V. 413. P. 425–428.
15. Grieneisen V.A., Xu J., Marée A.F. M. et al. Auxin transport is suffi cient to generate a maximum and gradient guiding root growth // Nature. 2007. V. 449. P. 1008–1013.
16. Habets M.E., Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals // New Phytol. 2014. V. 203. No. 2. P. 362–377
17. Jürgens G. Apical-basal pattern formation in Arabidopsis embryogenesis // EMBO J. 2001. V. 20. Nо. 14. P. 3609–3616.
18. Kleine-Vehn J., Wabnik K., Martinière A. et al. Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane // Mol. Systems Biol. 2011. V. 7. P. 540.
19. Krecek P., Skupa P., Libus J. et al. Protein family review The PIN-FORMED ( PIN ) protein family of auxin transporters // Genome Biol. 2009. V. 10. N. 12. P. 249.
20. Likhoshvai V.A., Omelyanchuk N.A., Mironova V.V. et al. Mathematical model of auxin distribution in the plant root // Russ. J. of Developm. Biol. 2007. V. 38. Nо. 6. P. 374–382.
21. Ljung K., Bhalerao R.P., Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth // Plant J. 2002. V. 28. Nо. 4. P. 465–474.
22. Medvedev S.S. Mechanisms and physiological role of polarity in plants // Russ. J. Plant Physiol. 2012. V. 59. Nо. 4. P. 502–514.
23. Mironova V.V, Omelyanchuk N.A., Yosiphon G. et al. A plausible mechanism for auxin patterning along the developing root // BMC Syst. Biol. 2010. V. 4. Nо. 1. P. 98.
24. Mironova V.V., Omelyanchuk N.A., Novoselova et al. Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance // Ann. Bot. 2012. V. 110. Nо. 2. P. 349–60.
25. Mravec J., Skupa P., Bailly A. et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter // Nature. 2009. V. 459. P. 1136–1140.
26. Petrasek J., Mravec J., Bouchard R. et al. PIN proteins perform a rate-limiting function in cellular auxin effl ux // Science. 2006. V. 312. P. 914–918.
27. Sabatini S., Beis D., Wolkenfelt H. et al. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root // Cell. 1999. V. 99. Nо. 5. P. 463–472.
28. Steinmann T., Geldner N., Grebe M. et al. Coordinated polar localization of auxin effl ux carrier PIN1 by GNOM ARF GEF // Science. 1999. V. 286. P. 316–318.
29. Tanaka H., Dhonukshe P., Brewer P.B., Friml J. Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development // Cell. Mol. Life Sci.: CMLS. 2006. V. 63. Nо. 23. P. 2738–2754.
30. Tejos R., Sauer M., Vanneste S. et al. Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis // Plant Cell. 2014. V. 26. Nо. 5. P. 2114–2128.
31. Ugartechea-Chirino Y., Swarup R., Swarup K. et al. The AUX1 LAX family of auxin infl ux carriers is required
32. for the establishment of embryonic root cell organization in Arabidopsis thaliana // Ann. Bot. 2010. V. 105. Nо. 2. P. 277–289.
33. Ulmasov T., Murfett J., Hagen G., Guilfoyle T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements // Plant Cell Online. 1997. V. 9. Nо. 11. P. 1963–1971.
34. Vanneste S., Friml J. Auxin: a trigger for change in plant development // Cell. 2009. V. 136. Nо. 6. P. 1005–1016.
35. Vieten A., Sauer M., Brewer P.B., Friml J. Molecular and cellular aspects of auxin-transport-mediated development // Trends Plant Sci. 2007. V. 12. Nо. 4. P. 160–168.
36. Vieten A., Vanneste S., Wisniewska J. et al. Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression // Development. 2005. V. 132. Nо. 20. P. 4521–4531.
37. Wisniewska J., Xu J., Seifertová D. et al. Polar PIN localization directs auxin fl ow in plants // Science. 2006. V. 312. P. 883.
38. Zazímalová E., Murphy A.S., Yang H., Hoyerová K., Hosek P. Auxin transporters -why so many? // Cold Spring Harbor Persp. Biol. 2010. V. 2. Nо. 3. P. a001552.