Analysis of the structure and function of the tomato Solanum lycopersicum L. MADS-box gene SlMADS5
https://doi.org/10.18699/VJ21.056
Abstract
At all stages of flowering, a decisive role is played by the family of MADS-domain transcription factors, the combinatorial action of which is described by the ABCDE-model of flower development. The current volume of data suggests a high conservatism of ABCDE genes in angiosperms. The E-proteins SEPALLATA are the central hub of the MADS-complexes, which determine the identity of the floral organs. The only representative of the SEPALLATA3 clade in tomato Solanum lycopersicum L., SlMADS5, is involved in determining the identity of petals, stamens, and carpels; however, data on the functions of the gene are limited. The study was focused on the SlMADS5 functional characterization. Structural and phylogenetic analyses of SlMADS5 confirmed its belonging to the SEP3 clade. An in silico expression analysis revealed the absence of gene transcripts in roots, leaves, and shoot apical meristem, and their presence in flowers, fruits, and seeds at different stages of development. Two-hybrid analysis showed the ability of SlMADS5 to activate transcription of the target gene and interact with TAGL1. Transgenic plants Nicotiana tabacum L. with constitutive overexpression of SlMADS5 cDNA flowered 2.2 times later than the control; plants formed thickened leaves, 2.5–3.0 times thicker stems, 1.5–2.7 times shortened internodes, and 1.9 times fewer flowers and capsules than non-transgenic plants. The flower structure did not differ from the control; however, the corolla petals changed color from light pink to magenta. Analysis of the expression of SlMADS5 and the tobacco genes NtLFY, NtAP1, NtWUS, NtAG, NtPLE, NtSEP1, NtSEP2, and NtSEP3 in leaves and apexes of transgenic and control plants showed that SlMADS5 mRNA is present only in tissues of transgenic lines. The other genes analyzed were highly expressed in the reproductive meristem of control plants. Gene transcripts were absent or were imperceptibly present in the leaves and vegetative apex of the control, as well as in the leaves and apexes of transgenic lines. The results obtained indicate the possible involvement of SlMADS5 in the regulation of flower meristem development and the pathway of anthocyanin biosynthesis in petals.
Keywords
About the Authors
A. V. NezhdanovaRussian Federation
Institute of Bioengineering
Moscow
M. A. Slugina
Russian Federation
Institute of Bioengineering
Moscow
E. A. Dyachenko
Russian Federation
Institute of Bioengineering
Moscow
A. M. Kamionskaya
Russian Federation
Institute of Bioengineering
Moscow
E. Z. Kochieva
Russian Federation
Institute of Bioengineering
Moscow
A. V. Shchennikova
Russian Federation
Institute of Bioengineering
Moscow
References
1. Alhindi T., Zhang Z., Ruelens P., Coenen H., Degroote H., Iraci N., Geuten K. Protein interaction evolution from promiscuity to specificity with reduced flexibility in an increasingly complex network. Sci. Rep. 2017;7:44948. DOI 10.1038/srep44948.
2. Ampomah-Dwamena C., Morris B.A., Sutherland P., Veit B., Yao J.L. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol. 2002;130(2):605-617. DOI 10.1104/pp.005223.
3. Angenent G.C., Franken J., Busscher M., van Dijken A., van Went J.L., Dons H.J., van Tunen A.J. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell. 1995;7(10): 1569-1582. DOI 10.1105/tpc.7.10.1569.
4. Busi M.V., Bustamante C., D’Angelo C., Hidalgo-Cuevas M., Boggio S.B., Valle E.M., Zabaleta E. MADS-box genes expressed during tomato seed and fruit development. Plant Mol. Biol. 2003;52(4): 801-815. DOI 10.1023/a:1025001402838.
5. Castillejo C., Romera-Branchat M., Pelaz S. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J. 2005;43(4):586-596. DOI 10.1111/j.1365-313X.2005.02476.x.
6. Coen E.S., Meyerowitz E.M. The war of the whorls: genetic interactions controlling flower development. Nature. 1991;353(6339):31-37. DOI 10.1038/353031a0.
7. Ditta G., Pinyopich A., Robles P., Pelaz S., Yanofsky M.F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 2004;14(21):1935-1940. DOI 10.1016/j.cub.2004.
8. Dong T., Hu Z., Deng L., Wang Y., Zhu M., Zhang J., Chen G. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol. 2013;163(2):1026-1036. DOI 10.1104/pp.113.224436.
9. Dyachenko E.A., Slugina М.А. Intraspecific variability of the Sus1 sucrose synthase gene in Pisum sativum accessions. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1):108-114. DOI 10.18699/VJ18.338. (in Russian)
10. Ferrario S., Immink R.G., Shchennikova A., Busscher-Lange J., Angenent G.C. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell. 2003;15(4):914-925. DOI 10.1105/tpc.010280.
11. Ferrario S., Shchennikova A.V., Franken J., Immink R.G., Angenent G.C. Control of floral meristem determinacy in petunia by MADS-box transcription factors. Plant Physiol. 2006;140(3):890-898. DOI 10.1104/pp.105.072660.
12. Goloveshkina E.N., Shulga O.A., Shchennikova A.V., Kamionskaya A.M., Skryabin K.G. Functional characterization of chrysanthemum SEPALLATA3 homologs CDM77 and CDM44 in transgenic tobacco plants. Dokl. Biol. Sci. 2012;443:87-90. DOI 10.1134/S0012496612020020.
13. Honma T., Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature. 2001;409(6819):525-529. DOI 10.1038/35054083.
14. Hugouvieux V., Silva C.S., Jourdain A., Stigliani A., Charras Q., Conn V., Conn S.J., Carles C.C., Parcy F., Zubieta C. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Res. 2018;46(10):4966-4977. DOI 10.1093/nar/gky205.
15. Immink R.G., Tonaco I.A., de Folter S., Shchennikova A., van Dijk A.D., Busscher-Lange J., Borst J.W., Angenent G.C. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 2009;10(2):R24. DOI 10.1186/gb-2009-10-2-r24.
16. Jang S., Hong M.Y., Chung Y.Y., An G. Ectopic expression of tobacco MADS genes modulates flowering time and plant architecture. Mol. Cells. 1999;9(6):576-586. http://www.molcells.org/journal/view.html?year=1999&volume=9&number=6&spage=576.
17. Jha P., Ochatt S.J., Kumar V. WUSCHEL: a master regulator in plant growth signaling. Plant Cell. Rep. 2020;39(4):431-444. DOI 10.1007/s00299-020-02511-5.
18. Karlova R., Chapman N., David K., Angenent G.C., Seymour G.B., de Maagd R.A. Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot. 2014;65(16):4527-4541. DOI 10.1093/jxb/eru316.
19. Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0. molecular biology and evolution. Mol. Biol. Evol. 2016;33:1870-1874. DOI 10.1093/molbev/msw054.
20. Lenhard M., Bohnert A., Jürgens G., Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell. 2001;105(6):805-814. DOI 10.1016/s0092-8674(01)00390-7.
21. Leseberg C.H., Eissler C.L., Wang X., Johns M.A., Duvall M.R., Mao L. Interaction study of MADS-domain proteins in tomato. J. Exp. Bot. 2008;59:2253-2265. DOI 10.1093/jxb/ern094.
22. Li N., Huang B., Tang N., Jian W., Zou J., Chen J., Cao H., Habib S., Dong X., Wei W., Gao Y., Li Z. The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant Cell Physiol. 2017;58(12):2241-2256. DOI 10.1093/pcp/pcx158.
23. Melzer R., Verelst W., Theissen G. The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res. 2009;37(1):144-157. DOI 10.1093/nar/gkn900.
24. Pelaz S., Ditta G.S., Baumann E., Wisman E., Yanofsky M.F. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000;405(6783):200-203. DOI 10.1038/35012103.
25. Pelaz S., Gustafson-Brown C., Kohlami S.E., Crosby W.L., Yanofsky M.F. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 2001a;26:385-394. DOI 10.1046/j.1365-313x.2001.2641042.x.
26. Pelaz S., Tapia-López R., Alvarez-Buylla E.R., Yanofsky M.F. Conversion of leaves into petals in Arabidopsis. Curr. Biol. 2001b;11(3): 182-184. DOI 10.1016/s0960-9822(01)00024-0.
27. Pnueli L., Abu-Abeid M., Zamir D., Nacken W., Schwarz-Sommer Z., Lifschitz E. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1991;1(2):255-266. DOI 10.1111/j.1365-313X.1991.00255.x.
28. Pnueli L., Hareven D., Broday L., Hurwitz C., Lifschitz E. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell. 1994;6(2):175-186. DOI 10.1105/tpc.6.2.175.
29. Qi X., Liu C., Song L., Li M. PaMADS7, a MADS-box transcription factor, regulates sweet cherry fruit ripening and softening. Plant Sci. 2020;301:110634. DOI 10.1016/j.plantsci.2020.110634.
30. Roldan M.V.G., Périlleux C., Morin H., Huerga-Fernandez S., Latrasse D., Benhamed M., Bendahmane A. Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Sci. Rep. 2017;7(1):4402. DOI 10.1038/s41598-017-04556-1.
31. Schilling S., Pan S., Kennedy A., Melzer R. MADS-box genes and crop domestication: the jack of all traits. J. Exp. Bot. 2018;69(7):1447-1469. DOI 10.1093/jxb/erx479.
32. Schmidt G.W., Delaney S.K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol. Genet. Genom. 2010; 283(3):233-241. DOI 10.1007/s00438-010-0511-1.
33. Shchennikova A.V., Shulga O.A., Immink R., Skryabin K.G., Angenent G.C. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol. 2004;134(4):1632-1641. DOI 10.1104/pp.103.036665.
34. Shima Y., Fujisawa M., Kitagawa M., Nakano T., Kimbara J., Nakamura N., Shiina T., Sugiyama J., Nakamura T., Kasumi T., Ito Y. Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Biosci. Biotechnol. Biochem. 2014;78(2):231-237. DOI 10.1080/09168451.2014.878221.
35. Slugina M.A., Dyachenko E.A., Kochieva E.Z., Shchennikova A.V. Structural and functional diversification of SEPALLATA genes TM5 and RIN in tomato species (section Lycopersicon). Dokl. Biochem. Biophys. 2020;492(1):152-158. DOI 10.1134/S1607672920030102.
36. Smaczniak C., Immink R.G., Angenent G.C., Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development. 2012;139(17):3081-3098. DOI 10.1242/dev.074674.
37. Theissen G. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 2001;4(1):75-85. DOI 10.1016/s1369-5266(00)00139-4.
38. Theissen G., Saedler H. Plant biology. Floral quartets. Nature. 2001; 409(6819):469-471. DOI 10.1038/35054172.
39. Urbanus S.L., de Folter S., Shchennikova A.V., Kaufmann K., Immink R.G., Angenent G.C. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol. 2009;9:5. DOI 10.1186/1471-2229-9-5.
40. Vrebalov J., Pan I.L., Arroyo A.J., McQuinn R., Chung M., Poole M., Rose J., Seymour G., Grandillo S., Giovannoni J., Irish V.F. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. Plant Cell. 2009;21(10):3041-3062. DOI 10.1105/tpc.109.066936.
41. Vrebalov J., Ruezinsky D., Padmanabhan V., White R., Medrano D., Drake R., Schuch W., Giovannoni J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science. 2002;296:343-346. DOI 10.1126/science.1068181.
42. Wang R., Tavano E.C.D.R., Lammers M., Martinelli A.P., Angenent G.C., de Maagd R.A. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/ Cas9-mutagenesis. Sci. Rep. 2019;9(1):1696. DOI 10.1038/s41598-018-38170-6.
43. Wang Y., Zhang J., Hu Z., Guo X., Tian S., Chen G. Genome-wide analysis of the MADS-box transcription factor family in Solanum lycopersicum. Int. J. Mol. Sci. 2019;20(12):2961. DOI 10.3390/ijms20122961.
44. Weigel D., Alvarez J., Smyth D.R., Yanofsky M.F., Meyerowitz E.M. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992; 69(5):843-859. DOI 10.1016/0092-8674(92)90295-n.
45. Zhang J., Hu Z., Wang Y., Yu X., Liao C., Zhu M., Chen G. Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. Plant Sci. 2018a;272:75-87. DOI 10.1016/j.plantsci.2018.03.031.
46. Zhang J., Hu Z., Yao Q., Guo X., Nguyen V., Li F., Chen G. A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Sci. Rep. 2018b;8(1): 3413. DOI 10.1038/s41598-018-21672-8.
47. Zhang S., Lu S., Yi S., Han H., Liu L., Zhang J., Bao M., Liu G. Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia. Planta. 2017; 245(2):439-457. DOI 10.1007/s00425-016-2617-0.
48. Zhao H.B., Jia H.M., Wang Y., Wang G.Y., Zhou C.C., Jia H.J., Gao Z.S. Genome-wide identification and analysis of the MADS-box gene family and its potential role in fruit development and ripening in red bayberry (Morella rubra). Gene. 2019;717:144045. DOI 10.1016/j.gene.2019.144045.