Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Phylogenetic and structural analysis of annexins in pea (Pisum sativum L.) and their role in legume-rhizobial symbiosis development

https://doi.org/10.18699/VJ21.057

Abstract

Annexins as Ca2+/phospholipid-binding proteins are involved in the control of many biological processes essential for plant growth and development. In a previous study, we had shown, using a proteomic approach, that the synthesis of two annexins is induced in pea roots in response to rhizobial inoculation. In this study, phylogenetic analysis identified these annexins as PsAnn4 and PsAnn8 based on their homology with annexins from other legumes. The modeling approach allowed us to estimate the structural features of these annexins that might influence their functional activity. To verify the functions of these annexins, we performed comparative proteomic analysis, experiments with calcium influx inhibitors, and localization of labeled proteins. Essential down-regulation of PsAnn4 synthesis in a non-nodulating pea mutant P56 (sym10) suggests an involvement of this annexin in the rhizobial symbiosis. Quantitative RT-PCR analysis showed that PsAnn4 was upregulated at the early stages of symbiosis development, starting from 1–3 days after inoculation to up to 5 days after inoculation, while experiments with the Ca2+ channel blocker LaCl3 revealed its negative influence on this expression. To follow the PsAnn4 protein localization in plant cells, it was fused to the fluorophores such as red fluorescent protein (RFP) and yellow fluorescent protein (YFP) and expressed under the transcriptional regulation of the 35S promoter in Nicotiana benthamiana leaves by infiltration with Agrobacterium tumefaciens. The localization of PsAnn4 in the cell wall or plasma membrane of plant cells may indicate its participation in membrane modification or ion transport. Our results suggest that PsAnn4 may play an important role during the early stages of pea-rhizobial symbiosis development.

About the Authors

O. A. Pavlova
All-Russia Research Institute for Agricultural Microbiology
Russian Federation

Pushkin, St. Petersburg



I. V. Leppyanen
All-Russia Research Institute for Agricultural Microbiology
Russian Federation

Pushkin, St. Petersburg



D. V. Kustova
All-Russia Research Institute for Agricultural Microbiology
Russian Federation

Pushkin, St. Petersburg



A. D. Bovin
All-Russia Research Institute for Agricultural Microbiology
Russian Federation

Pushkin, St. Petersburg



E. A. Dolgikh
All-Russia Research Institute for Agricultural Microbiology
Russian Federation

Pushkin, St. Petersburg



References

1. Bateman A., Coin L., Durbin R., Finn R.D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S., Sonnhammer E.L.L., Studholme D.J., Yeats C., Eddy S.R. The Pfam protein families database. Nucleic Acids Res. 2004;32:D138-D141. DOI 10.1093/nar/gkh121.

2. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal. Biochem. 1976;72(1-2):248-254. DOI 10.1016/0003-2697(76)90527-3.

3. Breakspear A., Liu C., Roy S., Stacey N., Rogers C., Trick M., Morieri G., Mysore K.S., Wen J., Oldroyd G.E.D., Downie J.A., Murray J.D. The root hair “Infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell Online. 2014;26(12):4680-4701. DOI 10.1105/tpc.114.133496.

4. Breton G., Vazquez-Tello A., Danyluk J., Sarhan F. Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol. 2000;41(2):177-184. DOI 10.1093/pcp/41.2.177.

5. Carrasco-Castilla J., Ortega-Ortega Y., Jáuregui-Zúñiga D., Juárez-Verdayes M.A., Arthikala M.K., Monroy-Morales E., Nava N., Santana O., Sánchez-López R., Quinto C. Down-regulation of a Phaseolus vulgaris annexin impairs rhizobial infection and nodulation. Environ. Exp. Bot. 2018;153:108-119. DOI 10.1016/j.envexpbot.2018.05.016.

6. Carroll A.D., Moyen C., Van Kesteren P., Tooke F., Battey N.H., Brownlee C. Ca2 + , annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell. 1998;10(8):1267-1276. DOI 10.1105/tpc.10.8.1267.

7. Clark G.B., Dauwalder M., Roux S.J. Purification and immunolocalization of an annexin-like protein in pea seedlings. Planta. 1992; 187(1):1-9. DOI 10.1007/BF00201617.

8. Clark G.B., Dauwalder M., Roux S.J. Immunological and biochemical evidence for nuclear localization of annexin in peas. Plant Physiol. Biochem. 1998;36(9):621-627. DOI 10.1016/S0981-9428(98)80010-7.

9. Clark G.B., Morgan R.O., Fernandez M.P., Roux S.J. Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol. 2012;196(3): 695-712. DOI 10.1111/j.1469-8137.2012.04308.x.

10. Clark G.B., Rafati D.S., Bolton R.J., Dauwalder M., Roux S.J. Redistribution of annexin in gravistimulated pea plumules. Plant Physiol. Biochem. 2000;38(12):937-947. DOI 10.1016/S0981-9428(00)01206-7.

11. Clark G.B., Sessions A., Eastburn D.J., Roux S.J. Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiol. 2001;126(3):1072-1084. DOI 10.1104/pp.126.3.1072.

12. Dam S., Dyrlund T.F., Ussatjuk A., Jochimsen B., Nielsen K., Goffard N., Ventosa M., Lorentzen A., Gupta V., Andersen S.U., Enghild J.J., Ronson C.W., Roepstorff P., Stougaard J. Proteome reference maps of the Lotus japonicus nodule and root. Proteomics. 2014;14(2-3):230-240. DOI 10.1002/pmic.201300353.

13. Davies J.M. Annexin-mediated calcium signalling in plants. Plants. 2014;3(1):128-140. DOI 10.3390/plants3010128.

14. De Carvalho Niebel F., Lescure N., Cullimore J.V., Gamas P. The Medicago truncatula MtAnn1 gene encoding an annexin is induced by Nod factors and during the symbiotic interaction with Rhizobium meliloti. Mol. Plant Microbe Interact. 1998;11(6):504-513. DOI 10.1094/MPMI.1998.11.6.504.

15. De Carvalho-Niebel F., Timmers A.C.J., Chabaud M., Defaux-Petras A., Barker D.G. The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. Plant J. 2002;32(3):343-352. DOI 10.1046/j.1365-313X.2002.01429.x.

16. Espinoza C., Liang Y., Stacey G. Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis. Plant J. 2017;89(5):984-995. DOI 10.1111/tpj.13437.

17. Feng Y.M., Wei X.K., Liao W.X., Huang L.H., Zhang H., Liang S.C., Peng H. Molecular analysis of the annexin gene family in soybean. Biol. Plant. 2013;57(4):655-662. DOI 10.1007/s10535-013-0334-0.

18. Gerke V., Moss S.E. Annexins: from structure to function. Physiol. Rev. 2002;82(2):331-371. DOI 10.1152/physrev.00030.2001.

19. Gong Z.Y., Song X., Chen G.Y., Zhu J.B., Yu G.Q., Zou H.S. Molecular studies of the Medicago truncatula MtAnn3 gene involved in root hair deformation. Chinese Sci. Bull. 2012;57(15):1803-1809. DOI 10.1007/s11434-011-4937-6.

20. Gorecka K.M., Konopka-Postupolska D., Hennig J., Buchet R., Pikula S. Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2005;336(3):868-875. DOI 10.1016/j.bbrc.2005.08.181.

21. Hofmann A., Proust J., Dorowski A., Schantz R., Huber R. Annexin 24 from Capsicum annuum. X-ray structure and biochemical characterization. J. Biol. Chem. 2000;275(11):8072-8082. DOI 10.1074/jbc.275.11.8072.

22. Hu N.J., Yusof A.M., Winter A., Osman A., Reeve A.K., Hofmann A. The crystal structure of calcium-bound annexin Gh1 from Gossypium hirsutum and its implications for membrane binding mechanisms of plant annexins. J. Biol. Chem. 2008;283(26):18314-18322. DOI 10.1074/jbc.M801051200.

23. Ijaz R., Ejaz J., Gao S., Liu T., Imtiaz M., Ye Z., Wang T. Overexpression of annexin gene AnnSp2, enhances drought and salt tolerance through modulation of ABA synthesis and scavenging ROS in tomato. Sci. Rep. 2017;7(1):1-14. DOI 10.1038/s41598-017-11168-2.

24. Jáuregui-Zúñiga D., Ortega-Ortega Y., Pedraza-Escalona M., ReyesGrajeda J.P., Ruiz M.I., Quinto C. Phosphoproteomic analysis in Phaseolus vulgaris roots treated with Rhizobium etli nodulation factors. Plant Mol. Biol. Report. 2016;34(5):961-969. DOI 10.1007/s11105-016-0978-y.

25. Kirienko A.N., Porozov Y.B., Malkov N.V., Akhtemova G.A., Le Signor C., Thompson R., Saffray C., Dalmais M., Bendahmane A., Tikhonovich I.A., Dolgikh E.A. Role of a receptor-like kinase K1 in pea Rhizobium symbiosis development. Planta. 2018;248(5):1101-1120. DOI 10.1007/s00425-018-2944-4.

26. Kodavali P.K., Skowronek K., Koszela-Piotrowska I., Strzelecka-Kiliszek A., Pawlowski K., Pikula S. Structural and functional characterization of annexin 1 from Medicago truncatula. Plant Physiol. Biochem. 2013;73:56-62. DOI 10.1016/j.plaphy.2013.08.010.

27. Konopka-Postupolska D., Clark G. Annexins as overlooked regulators of membrane trafficking in plant cells. Int. J. Mol. Sci. 2017;18(4): 1-34. DOI 10.3390/ijms18040863.

28. Konopka-Postupolska D., Clark G., Goch G., Debski J., Floras K., Cantero A., Fijolek B., Roux S., Hennig J. The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol. 2009;150(3):1394-1410. DOI 10.1104/pp.109.135228.

29. Konopka-Postupolska D., Clark G., Hofmann A. Structure, function and membrane interactions of plant annexins: An update. Plant Sci. 2011;181(3):230-241. DOI 10.1016/j.plantsci.2011.05.013.

30. Kreplak J., Madoui M.-A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., Klein A., Bérard A., Vrbová I., Fournier C., D’Agata L., Belser C., Berrabah W., Toegelová H., Milec Z., Vrána J., Lee H., Kougbeadjo A., Térézol M., Huneau C., Turo C.J., Mohellibi N., Neumann P., Falque M., Gallardo K., McGee R., Tar’an B., Bendahmane A., Aury J.-M., Batley J., Le Paslier M.-C., Ellis N., Warkentin T.D., Coyne C.J., Salse J., Edwards D., Lichtenzveig J., Macas J., Doležel J., Wincker P., Burstin J. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019;51(9):1411-1422. DOI 10.1038/s41588-019-0480-1.

31. Kwon Y.S., Lee D.Y., Rakwal R., Baek S.B., Lee J.H., Kwak Y.S., Seo J.S., Chung W.S., Bae D.W., Kim S.G. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics. 2016;16(1):122-135. DOI 10.1002/pmic.201500196.

32. Laohavisit A., Davies J.M. Annexins. New Phytol. 2011;189(1):40-53. DOI 10.1111/j.1469-8137.2010.03533.x.

33. Laohavisit A., Mortimer J.C., Demidchik V., Coxon K.M., Stancombe M.A., Macpherson N., Brownlee C., Hofmann A., Webb A.A.R., Miedema H., Battey N.H., Davies J.M. Zea mays annexins modulate cytosolic free Ca 2+ and generate a Ca 2+ -permeable conductance. Plant Cell. 2009;21(2):479-493. DOI 10.1105/tpc.108.059550.

34. Lefebvre B., Furt F., Hartmann M.-A., Michaelson L.V., Carde J.-P., Sargueil-Boiron F., Rossignol M., Napier J.A., Cullimore J., Bessoule J.-J., Mongrand S. Characterization of lipid rafts from Medicago truncatula root plasma membranes: A proteomic study reveals the presence of a raft-associated redox system. Plant Physiol. 2007; 144(1):402-418. DOI 10.18362/bjta.v4.i1-2.59.

35. Leppyanen I.V., Kirienko A.N., Lobov A.A., Dolgikh E.A. Differential proteome analysis of pea roots at the early stages of symbiosis with nodule bacteria. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(2):196-204. DOI 10.18699/VJ18.34.7.

36. Limpens E., Moling S., Hooiveld G., Pereira P.A., Bisseling T., Becker J.D., Küster H. Cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One. 2013;8(5):e64377. DOI 10.1371/journal.pone.0064377.

37. Lizarbe M.A., Barrasa J.I., Olmo N., Gavilanes F., Turnay J. Annexinphospholipid interactions. Functional implications. Int. J. Mol. Sci. 2013;14:2652-2683. DOI 10.3390/ijms14022652.

38. Madsen E.B., Madsen L.H., Radutoiu S., Olbryt M., Rakwalska M., Szczyglowski K., Sato S., Kaneko T., Tabata S., Sandal N., Stougaard J. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature. 2003;425(6958):637-640. DOI 10.1038/nature02045.

39. Manthey K., Krajinski F., Hohnjec N., Firnhaber C., Pünler A., Perlick A.M., Küster H. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol. PlantMicrobe Interact. 2004;17(10):1063-1077. DOI 10.1094/MPMI.2004.17.10.1063.

40. Mortimer J.C., Laohavisit A., Macpherson N., Webb A., Brownlee C., Battey N.H., Davies J.M. Annexins: multifunctional components of growth and adaptation. J. Exp. Bot. 2008;59(3):533-544. DOI 10.1093/jxb/erm344.

41. Ordog R. PyDeT, a PyMOL plug-in for visualizing geometric concepts around proteins. Bioinformation. 2008;2(8):346-347. DOI 10.6026/97320630002346.

42. Orosz L., Sváb Z., Kondorosi A., Sik T. Genetic studies on rhizobiophage 16-3. I. Genes and functions on the chromosome. Mol. Gen. Genet. 1973;125(4):341-350. DOI 10.1007/BF00276589.

43. Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., Thompson J.D., Higgins D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011; 7(1):539. DOI 10.1038/msb.2011.75.

44. Talukdar T., Gorecka K.M., de Carvalho-Niebel F., Downie J.A., Cullimore J., Pikula S. Annexins – calcium- and membrane-binding proteins in the plant kingdom: potential role in nodulation and mycorrhization in Medicago truncatula. Acta Biochim. Pol. 2009;56(2): 199-210. DOI 20091709.

45. Van Brussel A.A.N., Planque K., Quispel A. The wall of Rhizobium leguminosarum in bacteroid and free-living forms. J. Gen. Microbiol. 1977;101(1):51-56. DOI 10.1099/00221287-101-1-51.

46. Van Brussel A.A.N., Tak T., Wetselaar A., Pees E., Wijffelman C. Small leguminosae as test plants for nodulation of Rhizobium leguminosarum and other rhizobia and agrobacteria harbouring a leguminosarum sym plasmid. Plant Sci. Lett. 1982;27(3):317-325. DOI 10.1016/0304-4211(82)90134-1.

47. Voss T., Haberl P. Observations on the reproducibility and matching efficiency of two-dimensional electrophoresis gels: consequences for comprehensive data analysis. Electrophoresis. 2000;21(16): 3345-3350. DOI 10.1002/1522-2683(20001001)21:16<3345::AID-ELPS3345>3.0.CO;2-Z.

48. Webb B., Sali A. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinform. 2016;54(1):5.6.1-5.6.37. DOI 10.1002/cpbi.3.

49. Wienkoop S., Saalbach G. Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiol. 2003;131(3):1080-1090. DOI 10.1104/pp.102.015362.


Review

Views: 670


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)