Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Biochemical composition of tomato fruits of various colors

https://doi.org/10.18699/VJ21.058

Abstract

Tomato (Lycopersicon esculentum Mill.) is an economically important and widely cultivated vegetable crop that is consumed both fresh and processed. The nutritional value of tomato fruits is related to the content of carotenoids, polyphenols, sugars, organic acids, minerals and vitamins. Currently, there is a growing interest in the qualitative and quantitative increase in the content of health-promoting compounds in tomato fruits. VIR Lycopersicon (Tourn.) Mill. genetic resources collection includes 7678 accessions of one cultivated and nine wild species, which in turn provides ample opportunities for searching for information on the variability of the content of biologically active substances and searching for sources with a high content of them in the gene pool. Our work presents the results of the study of 70 accessions of cultivated and wild tomato on the main biochemical characteristics: the content of dry matter, ascorbic acid, sugars, carotenoids, chlorophylls and anthocyanins. As the basis for the selection of accessions for the study, accessions with various colors of fruits, including new accessions with varying content of anthocyanin, were taken. As a result of this study, the amplitude of variability in the content of dry matter (3.72–8.88 and 9.62–11.33 %), sugars (1.50–5.65 and 2.20–2.70 %), ascorbic acid (12.40–35.56 and 23.62– 28.14 mg/100 g), titratable acidity (0.14–0.46 and 0.33–0.48 %), chlorophylls (0.14–5.11 and 2.95–4.57 mg/100 g), carotenoids (0.97–99.86 and 1.03–10.06 mg/100 g) and anthocyanins (3.00–588.86 and 84.31–152.71 mg/100 g) in the fruits of cultivated and wild tomatoes, respectively, was determined. We have determined correlations between the content of dry matter and monosaccharides (r = 0.40, p ≤ 0.05), total sugars (r = 0.37, p ≤ 0.05) and ascorbic acid (r = 0.32, p ≤ 0.05); the content of ascorbic acid and carotenoids (r = 0.25, p ≤ 0.05). A high dependence of the content of chlorophyll a and b among themselves (r = 0.89, p ≤ 0.05), as well as between the content of chlorophyll b and anthocyanins (r = 0.47, p ≤ 0.05), the content of β-carotene (r = 0.26, p ≤ 0.05) and the content of monosaccharides (r = –0.29, p ≤ 0.05) has been noted. We have identif ied tomato accessions with a high content of individual chemical substances, as well as with a complex of traits that can be used as sources in breeding for a high content of dry matter, sugars, ascorbic acid, pigments and anthocyanins.

About the Authors

A. B. Kurina
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



A. E. Solovieva
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



I. A. Khrapalova
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



A. M. Artemyeva
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



References

1. Anjum S., Hamid A., Ghafoor A., Tahira R., Shah S., Awan S.I., Ahmad Kh. Sh. Evaluation of biochemical potential in tomato (Solanum lycopersicum) germplasms. Pak. J. Agric. Sci. 2020;57(1):177-187. DOI 10.21162/PAKJAS/20.8140.

2. Bai Y., Lindhout P. Domestication and breeding of tomatoes: What have we gained and what can we gain in the future? Ann. Bot. 2007; 100(5):1085-1094. DOI 10.1093/aob/mcm150.

3. Beckles D.M., Hong N., Stamova L., Luengwilai K. Biochemical factors contributing to tomato fruit sugar content: a review. Fruits. 2012;67(1):49-64. DOI 10.1051/fruits/2011066.

4. Belova A.Yu., Murashev S.V., Verzhuk V.G. Influence of pigments in plants leaves on formation and properties of fruit production. Nauchnyy Zhurnal NIU ITMO. Seriya Protsessy i Apparaty Pishchevykh Proizvodstv = Scientific Journal NRU ITMO. Series Processes and Food Production Equipment. 2012;1(13):13. (in Russian)

5. Bhattarai K., Sharma S., Panthee D.R. Diversity among modern tomato genotypes at different levels in fresh-market breeding. Int. J. Agron. 2018;2018:1-15. DOI 10.1155/2018/4170432.

6. Campbell J.K., Canene-Adams K., Lindshield B.L., Boileau T.W.-M., Clinton S.K., Erdman J.W. Jr. Tomato phytochemicals and prostate cancer risk. J. Nutr. 2004;134(12):3486-3492. DOI 10.1093/jn/134.12.3486S.

7. Chandra H.M., Ramalingam S. Antioxidant potentials of skin, pulp, and seed fractions of commercially important tomato cultivars. Food Sci. Biotechnol. 2011;20(1):15-21. DOI 10.1007/s10068-011-0003-z.

8. Da Silva-Souza M.A., Peres L.E.P., Freschi J.R., Purgatto E., Lajolo F.M., Hassimotto N.M.A. Changes in flavonoid and carotenoid profiles alter volatile organic compounds in purple and orange cherry tomatoes obtained by allele introgression. J. Sci. Food Agric. 2020;100(4):1662-1670. DOI 10.1002/jsfa.10180.

9. Dar R.A., Sharma J.P. Genetic variability studies of yield and quality traits in tomato (Solanum lycopersicum L.). Int. J. Plant Breed. Genet. 2011;5(2):168-174. DOI 10.3923/ijpbg.2011.168.174.

10. Descriptors Tomato (Lycopersicon spp.) IPGRI (International Plant Genetic Resources Institute). Rome. Italy, 1996.

11. Ermakov A.I., Arasimovich V.V., Yarosh N.P. Biochemical Methods in Plant Studies. Leningrad: Agropromizdat Publ., 1987. (in Russian)

12. FAOSTAT, 2019. Available at: http://www.fao.org/faostat/en/#home.

13. Friedman M. Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 2013;61(40):9534-9550. DOI 10.1021/jf402654e.

14. Gascuel Q., Diretto G., Monforte A.J., Fortes A.M., Granell A. Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape. Front. Plant Sci. 2017;8:652. DOI 10.3389/fpls.2017.00652.

15. Golubkina N.A., Mоlchanova A.V., Tareeva M.M., Baback O.G., Nekrashevich N.A., Kondratyeva I.Yu. Quantitative thing layer chromatography for evaluation of carotenoid composition of tomatoes Solanum licopersicum. Ovoshchi Rossii = Vegetable Crops of Russia. 2017;5:96-99. DOI 10.18619/2072-9146-2017-5-96-99. (in Russian)

16. Gupta A., Kawatra A., Sehgal S. Physical-chemical properties and nutritional evaluation of newly developed tomato genotypes. Afr. J. Food Sci. Technol. 2011;2(7):167-172.

17. Hammer Ø., Harper D.A.T., Ryan P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4(1):1-9.

18. Harish M.Ch., Shanmugaraj B.M., Balamurugan S., Sathishkumar R. Influence of genotypic variations on antioxidant properties in different fractions of tomato. J. Food Sci. 2012;77(11):1174-1178. DOI 10.1111/j.1750-3841.2012.02962.x.

19. Ignatova S.I., Babak O.G., Bagirova S.F. Development of high-lycopene tomato hybrids using conventional breeding techniques and molecular markers. Ovoshchi Rossii = Vegetable Crops of Russia. 2020;5:22-28. DOI 10.18619/2072-9146-2020-5-22-28. (in Russian)

20. Ilić Z., Aharon Z., Perzelan Y., Alkalai-Tuvia S., Fallik E. Lipophilic and hydrophilic antioxidant activity of tomato fruit during postharvest storage on different temperatures. Acta Hortic. 2009;830(91):627-634. DOI 10.17660/ActaHortic.2009.830.91.

21. International CMEA Classifier of the Genus Lycopersicon Tourn. Leningrad, 1986. (in Russian)

22. Jones C.M., Mes P., Myers J.R. Characterization and inheritance of the Anthocyanin fruit (Aft) tomato. J. Hered. 2003;94(6):449-456. DOI 10.1093/jhered/esg093.

23. Kendrick R.E., Kerckhoffs L.H.J., Van Tuinen A., Koornneef M. Photomorphogenic mutants of tomato. Plant Cell Environ. 1997;20: 746-751.

24. Khachik F., Carvalho L., Bernstein P.S., Muir G.J., Zhao D.-Y., Katz N.B. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp. Biol. Med. 2002; 227(10):845-851. DOI 10.1177/153537020222701002.

25. Kondratyeva I.Yu., Engalychev M.R. Orange-fruited tomato varieties with high taste and preventive-therapeutic properties. Izvestiya Federalnogo Nauchnogo Tsentra Ovoshchevodstva = News of FSVC. 2019;2:71-78. DOI 10.18619/2658-4832-2019-2-71-78. (in Russian)

26. Kondratyeva I.Yu., Golubkina N.A. Lycopene and β-carotene in tomato. Ovoshchi Rossii = Vegetable Crops of Russia. 2016;4:80-83. DOI 10.18619/2072-9146-2016-4-80-83. (in Russian)

27. Kondratyeva I.Yu., Pavlov L.V. Dry components concentration in tomato fruits in dependence of qualitative and quantitative parameters. Kartofel i Ovoshchi = Potato and Vegetables. 2009;5:21. (in Russian)

28. Kuzyomensky A.V. Breeding and Genetic Studies of Mutant Forms of Tomato. Kharkov, 2004. (in Russian)

29. Leiva-Brondo M., Valcárcel M., Cortés-Olmos C., Roselló S., CebollaCornejo J., Nuez F. Exploring alternative germplasm for the development of stable high vitamin C content in tomato varieties. Sci. Hortic. 2012;133:84-88. DOI 10.1016/J.SCIENTA.2011.10.013.

30. Li H., Deng Z., Liu R., Young J.C., Zhu H., Loewen S., Tsao R. Characterization of phytochemicals and antioxidant activities of a purple tomato (Solanum lycopersicum L.). J. Agric. Food Chem. 2011; 59(21):11803-11811. DOI 10.1021/jf202364v.

31. Lim W., Miller R., Park J., Park S. Consumer sensory analysis of high flavonoid transgenic tomatoes. J. Food Sci. 2014;79(6):1212-1217. DOI 10.1111/1750-3841.12478.

32. Martí R., Roselló S., Cebolla-Cornejo J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers (Basel ). 2016;8(6):58. DOI 10.3390/cancers8060058.

33. Mes P.J., Boches P., Myers J.R., Durst R. Characterization of tomatoes expressing anthocyanin in the fruit. J. Am. Soc. Hortic. Sci. 2008; 133(2):262-269. DOI 10.21273/JASHS.133.2.262.

34. Mozos I., Stoian D., Caraba A., Malainer C., Horbanczuk J.O., Atanasov A.G. Lycopene and vascular health. Front. Pharmacol. 2018;9: 521. DOI 10.3389/fphar.2018.00521.

35. Nour R.V., Trandafir I., Ionica M.E. Antioxidant compounds, mineral content and antioxidant activity of several tomato cultivars grown in Southwestern. Not. Bot. Horti Agrobot. Cluj-Napoca. 2013;41(1): 136-142. DOI 10.15835/nbha4119026.

36. Ooe E., Ogawa K., Horiuchi T., Tada H., Murase H., Tsuruma K., Shimazawa M., Hara H. Analysis and characterization of anthocyanins and carotenoids in Japanese blue tomato. Biosci. Biotechnol. Biochem. 2016;80(2):341-349. DOI 10.1080/09168451.2015.1091715.

37. Owusu J., Ma H., Wang Z., Amissah A. Effect of drying methods on physicochemical properties of pretreated tomato (Lycopersicon esculentum Mill.) slices. Croat. J. Food Technol. Biotechnol. Nutr. 2012;7(1-2):106-111.

38. Pal R.S., Hedau N.K., Lakshmi Kant, Pattanayak A. Functional quality and antioxidant properties of tomato genotypes for breeding better quality varieties. Electron. J. Plant Breed. 2018;9(1):1-8. DOI 10.5958/0975-928X.2018.00001.7.

39. Peralta I.E., Spooner D.M. History, origin and early cultivation of tomato (Solanaceae). In: Razdan M.K., Mattoo A.K. (Eds.) Genetic Improvement of Solanaceous. Enfield, USA: Science Publ., 2007. DOI 10.1201/b10744-2.

40. Peter J.M., Peter B., James R.M. Characterization of tomatoes expressing anthocyanin in the fruit. J. Amer. Soc. Hort. Sci. 2008;133:262-269.

41. Raiola A., Tenore G.C., Barone A., Frusciante L., Rigano M.M. Vitamin E content and composition in tomato fruits: Beneficial roles and bio-fortification. Int. J. Mol. Sci. 2015;16(12):29250-29264. DOI 10.3390/ijms161226163.

42. Rick C.M. Tomato. Genet. Coop. Rept. 1959;9:41-42.

43. Roohanitaziani R., de Maagd R.A., Lammers M., Molthoff J., MeijerDekens R., van Kaauwen M.P.W., Finkers H.T., Tikunov Yu., Visser R.G.F., Bovy A.G. Exploration of a resequenced tomato core collection for phenotypic and genotypic variation in plant growth and fruit quality traits. Genes. 2020;11(11):1278. DOI 10.3390/genes11111278.

44. Scarano A., Butelli E., de Santis S., Cavalcanti E., Hill L., de Angelis M., Giovinazzo G., Chieppa M., Martin C., Santino A. Combined dietary anthocyanins, flavonols, and stilbenoids alleviate inflammatory bowel disease symptoms in mice. Front. Nutr. 2018;4:75. DOI 10.3389/fnut.2017.00075.

45. Stommel J.R. Enzymatic components of sucrose accumulation in the wild tomato species Lycopersicon peruvianum. Plant Physiol. 1992; 99(1):324-328. DOI 10.1104/pp.99.1.324.

46. Tanksley S.D. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell. 2004;16(Suppl.): S181-S189. DOI 10.1105/tpc.018119.

47. Tomato – UPOV (Solanum lycopersicum L.). 0007 TG/44/11 Rev. Geneva, 2012.

48. Viuda-Martos M., Sanchez-Zapata E., Sayas-Barberá E., Sendra E., Pérez-Álvarez J.A., Fernández-López J. Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: a review. Crit. Rev. Food Sci. Nutr. 2014;54(8):1032-1049. DOI 10.1080/10408398.2011.623799.

49. Wang D., Seymour G.B. Tomato flavor: Lost and found? Mol. Plant. 2017;10(6):782-784. DOI 10.1016/j.molp.2017.04.010.

50. Wei M.Y., Giovannucci E.L. Lycopene, tomato products, and prostate cancer incidence: a review and reassessment in the PSA screening era. J. Oncol. 2012;2012:271063. DOI 10.1155/2012/271063.

51. Zanfini A., Corbini G., Rosa C.L., Dreassi E. Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and α-tocopherol in synthetic mixtures. Food Sci. Technol. 2010;1(43): 67-72. DOI 10.1016/j.lwt.2009.06.011.

52. Zhang Y., Butelli E., Alseekh S., Tohge T., Rallapalli G., Luo J., Kawar P.G., Hill L., Santino A., Fernie A.R., Martin C. Multilevel engineering facilitates the production of phenylpropanoid compounds in tomato. Nat. Commun. 2015;6:8635. DOI 10.1038/ncomms9635.


Review

Views: 1978


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)