Preview

Vavilov Journal of Genetics and Breeding

Advanced search

ANALYSIS OF POLYMORPHISM OF ORGANELLE DNA TO ELUCIDATE THE PHYLOGEOGRAPHY OF NORWAY SPRUCE IN THE EAST EUROPEAN PLAIN

Abstract

The history of Norway spruce distribution in the East European plain is discussed with regard to the results of allele diversity survey of the mitochondrial Nad1 gene, which is maternally inherited, and the chloroplast trnT-trnF region, which is paternally inherited in spruce. The polymorphism of organelle DNAs was examined in 221 genotypes from 28 regions of the former USSR in geographical provenances. Alleles common for the northern Picea abies lineage were detected in accessions originated from the most regions investigated. The Nad1 allele typical for the southern lineage of P. abies was discovered just in spruces originated from Carpathians. The Nad1 allele typical for P. obovata was found in spruces from the Sverdlovsk (Urals) and Krasnoyarsk (Siberia) oblasts. Among the trees analyzed, some had chloroplast DNA sequences (trnT-trnF) assigned to P. abies, others carried cpDNA haplotypes fixed for P. obovata. Analysis of organelle DNA allows revealing the hybrid nature of spruces resulting from cross-pollination of different species.

About the Authors

E. K. Potokina
Vavilov Institute of Plant Industry, St. Petersburg, Russia Saint Petersburg State Forest Technical University, St. Petersburg, Russia
Russian Federation


A. A. Kiseleva
Vavilov Institute of Plant Industry, St. Petersburg, Russia Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


M. A. Nikolaeva
Saint Petersburg State Forest Technical University, St. Petersburg, Russia
Russian Federation


S. A. Ivanov
Saint Petersburg State Forest Technical University, St. Petersburg, Russia
Russian Federation


P. S. Ulianich
Saint Petersburg State Forest Technical University, St. Petersburg, Russia
Russian Federation


A. F. Potokin
Saint Petersburg State Forest Technical University, St. Petersburg, Russia Saint Petersburg State University, St. Petersburg, Russia
Russian Federation


References

1. Егоров А.А., Бурцев Д.С., Орлова Л.В. и др. Продуктивность видов и внутривидовых таксонов Picea abies, P. fennica, P. obovata в географических культурах на Северо-Западе России // Уч. записки Петрозаводского гос. ун-та. 2011. Т. 121. № 8. С. 59–64.

2. Ильинов А.А., Раевский Б.В., Рудковская О.А. и др. Сравнительная оценка фенотипического и генетического разнообразия северотаежных малонарушенных популяций ели финской (Picea × fennica) // Тр. Карельского науч. центра РАН. 2011. Т. 1. С. 37–47.

3. Минченко А.Г., Дударева Н.А. Митохондриальный геном. Новосибирск: Наука, 1990. 194 с.

4. Политов Д.В. Генетика популяций и эволюционные взаимоотношения видов сосновых (сем. Pinaceae) Северной Евразии: Автореф. дис. ... д-ра биол. наук. М., 2007. 47 с.

5. Попов П.П. Формовая структура и географическая дифференциация популяций ели на северо-западе России // Экология. 2010. № 5. С. 336–343.

6. Толлефсруд М.М., Спиренсен Х. Отцовская интрогрессия от ели сибирской (Picea obovata) к ели обыкновенной (P. abies): отслеживание потока пыльцы и семян с помощью хлоропластной и митохондриальной ДНК // Сохранение лесных генетических ресурсов Сибири: Матер. 3-го междунар. совещ. Красноярск, 2011. С. 166–167.

7. Щербакова М.А. Генэкология ели обыкновенной Picea abies (L.) Karst. в разных лесорастительных районах: Автореф. дис. ... д-ра биол. наук. Красноярск, 1973. 47 с.

8. Bobola M., Guenette D., Eckert R. et al. Using nuclear and organelle DNA markers to discriminate among Picea rubens, Picea mariana, and their hybrids // Can. J. Forest Res. 1996. V. 26. No. 3. P. 433–443.

9. Bousquet J., Simon L., Lalonde M. DNA amplifi cation from vegetative and sexual tissues of trees using polymerase chain reaction // Can. J. Forest Res. 1990. V. 20. P. 254–257.

10. Dering M., Lewandowski A. Finding the meeting zone: Where have the northern and southern ranges of Norway spruce overlapped? // Forest Ecol. Manag. 2009. V. 259. P. 229–235.

11. Giesecke T., Bennett K.D. The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas // J. Biogeogr. 2004. V. 31. P. 1523–1548.

12. Grivet D., Jeandroz S., Favre J. Nad1 b/c intron polymorphism reveals maternal inheritance of the mitochondrial genome in Picea abies // Theor. Appl. Genet. 1999. V. 99. No. 1/2. P. 346–349.

13. Gugerli F., Sperisen C., Büchler U. et al. Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial re-colonization of the western Alps // Mol. Ecol. 2001. V. 10. P. 1255–1263.

14. Huntley B., Birks H. An atlas of past and present pollen maps for Europe: 0–13,000 BP. Cambridge, UK: Cambridge Univ. Press, 1983.

15. Lockwood J.D., Aleksić J.M., Zou J. et al. A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences // Mol. Phylogenet. Evol. 2013. V. 69. No. 3. P. 717–727.

16. Neale D., Sederoff R. Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in loblolly pine // Theor. Appl. Genet. 1989. V. 77. No. 2. P. 212–216.

17. Neale D., Marshall K., Harry D. Inheritance of chloroplast and mitochondrial DNA in incense-cedar (Calocedrus decurrens) // Can. J. Forest Res. 1991. V. 21. No. 5. P. 717–720.

18. Newton A.C., Allnutt T.R., Gillies A.C.M. et al. Molecular phylogeography, intraspecific variation and the conservation of tree species // Trends Ecol. Evol. 1999. V. 14. P. 140–145.

19. Ran J., Wei X., Wang X. Molecular phylogeny and biogeography of Picea (Pinaceae): Implications for phylogeographical studies using cytoplasmic haplotypes // Mol. Phylogenet. Evol. 2006. V. 41. P. 405–419.

20. Schmidt-Vogt H. Die Fichte, Band I // Taxonomie. Verbreitung. Morphologie. Ökologie. Waldgesellschaft. Hamburg und Berlin. Verlag Paul Parey, 1977. Т. 647.

21. Sears B. Elimination of plastids during spermatogenesis and fertilization in the plant kingdom // Plasmid. 1980. V. 4. No. 3. P. 233–255.

22. Sperisen C., Buchler U., Gugerli F. et al. Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce // Mol. Ecol. 2001. V. 10. P. 257–263.

23. Stine M., Sears B., Keathley D. Inheritance of plastids in interspecific hybrids of blue spruce and white spruce // Theor. Appl. Genet. 1989. V. 78. No. 6. P. 768–774.

24. Sutton B., Flanagan D., Gawley J. et al. Inheritance of chloroplast and mitochondrial DNA in Picea and composition of hybrids from introgression zones // Theor. Appl. Genet. 1991. V. 82. No. 2. P. 242–248.

25. Taberlet P., Gielly L., Pautou G., Bouvet J. Universal primers for amplifi cation of three non-coding regions of chloroplast DNA // Plant Mol. Biol. 1991. 17. Р. 1105–1109.

26. Tollefsrud M.M., Brochmann C., Sperisen C. Paternal introgression from Siberian spruce (Picea obovata) to Norway spruce (P. abies): tracing pollen and seed flow with chloroplast and mitochondrial DNA // Phylogeography, diversity and hybridization in Norway spruce / M.M. Tollefsrud. PhD thesis. University of Oslo, Norway. 2008b.

27. Tollefsrud M., Kissling R., Gugerli F. et al. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen // Mol. Ecol. 2008а. V. 17. No. 18. P. 4134–4150.

28. Volkova P., Shipunov A., Borisova P. et al. In search of hybridity: the case of Karelian spruces // Silva Fennica. 2014. V. 48. Nо. 2. Art. id 1072. 14 p. http://dx.doi.org/10.14214/sf.1072


Review

Views: 652


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)