Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Genotypic and ecological variability of zinc content in the grain of spring bread wheat varieties in the international nursery KASIB

https://doi.org/10.18699/VJ21.061

Abstract

Spring bread wheat is the staple crop in Western Siberia and Kazakhstan, a significant portion of which goes for export. Wheat breeding with a high level of zinc in wheat grain is the most cost-effective and environmentally friendly way to address zinc deficiency in the diet. The purpose of this work was to evaluate the contribution of the factors ‘location’ and ‘genotype’ in the variability of zinc content in wheat grain, and to identify the best varieties as sources of this trait for breeding. The research on screening zinc content in the wheat grain of 49 spring bread wheat varieties from the KazakhstanSiberia Spring Wheat Trial (KASIB) nursery was carried out at 4 sites in Russia (Chelyabinsk, Omsk, Tyumen, Novosibirsk) and 2 sites in Kazakhstan (Karabalyk and Shortandy) in 2017–2018. The content of zinc in wheat grain was evaluated at the Ionomic Facility of University of Nottingham in the framework of the EU project European Plant Phenotyping Network-2020. The analysis of variance showed that the main contribution into the general phenotypic variation of the studied trait, 38.7 %, was made by the factor ‘location’ due to different contents of zinc and moisture in the soil of trial sites; the effect of the factor ‘year’ was 13.5 %, and the effect of the factor ‘genotype’ was 8.0 %. The most favorable environmental conditions for accumulation of zinc in wheat grain were observed in the Omsk region. In Omsk, the average zinc content in all studied varieties was 50.4 mg/kg, with 63.7 mg/kg in the best variety ‘OmGAU 100’. These values are higher than the target values of the international program Harvest Plus. ‘Novosibirskaya 16’ (49.4 mg/kg), ‘Silach’ (48.4 mg/kg), ‘Line 4-10-16’ (47.2 mg/kg), ‘Element 22’ (46.3 mg/kg) and ‘Lutescens 248/01’ (46.0 mg/kg) were identified as being the best varieties. Significant possibilities for the production of wheat grain with high zinc content, which is in demand for the production of bread and pastry products with functional properties, were identified in the Western Siberian region.

About the Authors

V. P. Shamanin
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Omsk



P. Flis
University of Nottingham
United Kingdom

Nottingham



T. V. Savin
Kazakh Research Institute of Agriculture and Plant Growing
Kazakhstan

Almalybak, Almaty region



S. S. Shepelev
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Omsk



O. G. Kuzmin
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Omsk



A. S. Chursin
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Omsk



I. V. Pototskaya
Omsk State Agrarian University named after P.A. Stolypin
Russian Federation

Omsk



I. E. Likhenko
Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



I. Yu. Kushnirenko
Chelyabinsk Agricultural Research Institute
Russian Federation

Chelyabinsk



A. A. Kazak
Northern Trans-Ural State Agricultural University
Russian Federation

Tyumen



V. A. Chudinov
Karabalyk Experimental Agricultural Research Station
Kazakhstan

Karabalyk, Kostanai region



T. V. Shelaeva
Research and Production Center for Grain and Farming named after A.I. Baraev
Kazakhstan

Shortandy, Akmola region



A. I. Morgounov
Ministry of Environment, Water and Agriculture
Saudi Arabia

Riyadh



References

1. Abugalieva A., Flis P., Shamanin V., Savin T., Morgounov A. Ionomic analysis of spring wheat grain produced in Kazakhstan and Russia. Commun. Soil Sci. Plant. Anal. 2020. Available at: https://www.tandfonline.com. DOI 10.1080/00103624.2020.1865398.

2. Abugaliyeva A.I., Savin T.V. The wheat introgressive form evaluation by grain biochemical and technological properties. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(3):353-362. DOI 10.18699/VJ18.371. (in Russian)

3. Azarenko Yu.A., Ermohin Yu.I., Aksenova Yu.V. Zinc in soils of agrocenosis of Omsk Region and efficiency of zinc fertilizers application. Zemledelije = Agriculture. 2019;2:13-17. DOI 10.24411/0044-3913-2019-10203. (in Russian)

4. Bhatta M., Shamanin V., Shepelev S., Baenziger S., Pozherukova V., Pototskaya I., Morgounov A. Marker-trait associations for enhancing agronomic performance, disease resistance, and grain quality in synthetic and bread wheat accessions in Western Siberia. G3: Genes Genom. Genet. 2019;9(12):4209-4222. DOI 10.1534/g3.119.400811.

5. Björck I., Östman E., Kristensen M., Anson N.M., Price R.K., Haenen G.R.M., Havenaar R., Knudsen K.E.B., Frid A., Mykkanen H., Welch R.W., Riccardi G. Cereal grains for nutrition and health benefits: overview of results from in vitro, animal and human studies in the HEALTHGRAIN project. Trends Food Sci. Technol. 2012; 25(2):87-100.

6. Bouis H. Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. SCN News. 1995; 12:15-19. PMID: 12346314.

7. Bouis H.E., Hotz C., McClafferty B., Meenakshi J.V., Pfeiffer W.H. Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011;32:31S-40S.

8. Cakmak I., Torun A., Millet E., Feldman M., Fahim T., Korol A., Nevo E., Braun H.J., Ozkan H. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 2004;50:1047-1054.

9. Chen X.-P., Zhang Y.-Q., Tong Y.-P., Xue Y.-F., Liu D.-Y., Zhang W., Deng Y., Meng Q.-F., Yue S.-C., Yan P., Cui Z.-L., Shi X.-J., Guo S.-W., Sun Y.-X., Ye Y.-L., Wang Z.-H., Jia L.-L., Ma W.-Q., He M.-R., Zhang X.-Y., Kou C.-L., Li Y.-T., Tan D.-S., Cakmak I., Zhang F.-S., Zou C.-Q. Harvesting more grain zinc of wheat for human health. Sci. Rep. 2017;7:7016. DOI 10.1038/s41598-01707484-2.

10. Genc Y., Verbyla A.P., Torun A.A., Cakmak I., Willsmore K., Wallwork H., McDonald G.K. Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil. 2009;314:49-66. DOI 10.1007/s11104-008-9704-3.

11. Gomez-Becerra H.F., Morgunov A.I., Abugalieva A.I. Evaluation of the germplasm through the Kazakhstan-Siberian network of spring wheat improvement: I. Genotype × environment interactions and site classification for grain yield and grain protein content. Austr. J. Agric. Res. 2007;4:649-660.

12. Gordeeva E., Shamanin V., Shoeva O., Kukoeva T., Morgounov A., Khlestkina E. The strategy for marker-assisted breeding of anthocyanin-rich spring bread wheat (Triticum aestivum L.) cultivars in Western Siberia. Agronomy. 2020;10:1603. DOI 10.3390/agronomy10101603.

13. Govindan V., Singh R.P., Crespo-Herrera L., Juliana Ph., Dreisigacker S., Valluru R., Stangoulis J., Sohu V.S., Mavi G.S., Mishra V.K., Balasubramaniam A., Chatrath R., Gupta V., Singh G.P., Joshi A.K. Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. Sci. Rep. 2018;8:13526. DOI 10.1038/s41598-018-31951-z.

14. Guttieri M.J., Seabourn B.W., Liu C., Baenziger P.S., Waters B.M. Distribution of cadmium, iron, and zinc in millstreams of hard winter wheat (Triticum aestivum L.). J. Agric. Food Chem. 2015;63:10681-10688. DOI 10.1021/acs.jafc.5b04337.

15. Khlestkina E.K., Shoeva O.Y., Gordeeva E.I., Otmakhova Y.S., Usenko N.I., Tikhonova M.A., Tenditnik M.V., Amstislavskaya T.G. Anthocyanins in wheat grain: genetic control, health benefit and breadmaking quality. In: Current Challenges in Plant Genetics, Genomics, Bioinformatics, and Biotechnology: Proceed. of the Fifth Int. Sci. Conf. PlantGen2019 (June 24–29, 2019, Novosibirsk, Russia). Novosibirsk, 2019;5-18. DOI 10.18699/ICG-PlantGen2019-02.

16. Krishnappa G., Singh A.M., Chaudhary S., Ahlawat A.K., Singh S.K., Shukla R.B., Jaiswa J.P., Singh G.P., Solanki I.S. Molecular mapping of the grain iron and zinc concentration, protein content and thousand kernel weight in wheat (Triticum aestivum L.). PLoS One. 2017;12(4):e0174972. DOI 10.1371/journal.pone.0174972.

17. Listman M., Guzman C., Palacios-Rojas N., Pfeiffer W.H., San Vicente F., Govindan V. Improving nutrition through biofortification: preharvest and postharvest technologies. Cereal Foods World. 2019; 64(3). DOI 10.1094/CFW-64-3-0025.

18. Liu H., Wang Z.H., Li F., Li K., Yang N., Yang Y., Huang D., Liang D., Zhao H., Mao H., Liu J., Qiu W. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Res. 2014;156:151-160. DOI 10.1016/j.fcr.2013.11.011.

19. Methods of State Crop Variety Trial. Iss. 2: Сereals, legumes, maize, and fodder crops. Moscow, 1989. (in Russian)

20. Mitrofanova O.P., Khakimova A.G. New genetic resources in wheat breeding for an increased grain protein content. Russ. J. Genet. Appl. Res. 2017;7:477-487. DOI 10.1134/S2079059717040062.

21. Morgоunov A., Gomez-Becerra H.F., Abugalieva A. Iron and zinc concentration in grain of spring bread wheat from Kazakhstan and Siberia. Agromeridian. 2006;1(2):5-16.

22. Morgunov A.I., Gomez-Becerra H.F., Abugalieva A.I., Dzhunusova M., Yessimbekova M.A., Muminjanov H., Zelenskiy Y., Ozturk L., Cakmak Y. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica. 2007;155:193-203. DOI 10.1007/s10681-006-9321-2.

23. Murphy K.M., Reeves P.G., Jones S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica. 2008;163:381-390. DOI 10.1007/s10681-008-9681-x.

24. Peleg Z., Cakmack I., Ozturk L., Yazici A., Jun Y., Budak H., Korol A.B., Fahima T., Saranga Y. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor. Appl. Genet. 2009;119:353-369. DOI 10.1007/s00122-009-1044-z.

25. Qi Y.T., Zhou S.N., Zhang Q., Yang L.X. The effect of foliar Zn application at grain filling stage on Zn bioavailability in grain fractions of modern winter wheat cultivars. J. Agro Environ. Sci. 2013;32: 1085-1091.

26. Saleh A.S.M., Wang P., Wang N., Yang S., Xiao Z. Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: research advances and application challenges. Crit. Rev. Food Sci. Nutr. 2019;59(2):207-227. DOI 10.1080/10408398.2017.1363711.

27. Savin T.V., Abugaliyeva A.I., Cakmak I., Kozhakhmetov K. Mineral composition of wild relatives and introgressive forms in wheat selection. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(1):88-96. DOI 10.18699/VJ18.335. (in Russian)

28. Selyaninov G.T. Fundamentals of agroclimatic zoning of the USSR. In: Issues of Agroclimatic Zoning in the USSR. Моscow, 1958. (in Russian)

29. Singh B., Natesan S.K.A., Singh B.K., Usha K. Improving zinc efficiency of cereals under zinc deficiency. Curr. Sci. 2005;88:36-44.

30. Singh R.P., Velu G. Zinc-biofortified wheat: harnessing genetic diversity for improved nutritional quality. Sci. Brief: Biofort. 2017. Available at: http://www.harvestplus.org/sites/default/files/publications/ScienceBrief-Biofortification-1_ZincWheat_May2017.pdf

31. Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science. 2006;314(5803):1298-1301. DOI 10.1126/science.1133649.

32. Velu G., Crespo-Herrera L., Huert J., Payne T., Guzman C., Singh R.P. Assessing genetic diversity to breed competitive biofortified wheat with increased grain Zn and Fe concentrations. Front. Plant Sci. 2019;9:1971. DOI 10.3389/fpls.2018.01971.

33. Velu G., Ortiz-Monasterio I., Cakmak I., Hao Y., Singh R.P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014;59:365-372.

34. Velu G., Singh R.P., Huerta-Espino J., Peña R.J. Breeding for enhanced zinc and iron concentration in CIMMYT spring wheat germplasm. Czech J. Genet. Plant Breed. 2011;47:S174-S177. DOI 10.17221/3275-CJGPB.

35. Verma S.K., Kumar S., Sheikh I., Malik S., Mathpal P., Chugh V., Kumar S., Prasad R., Dhaliwal H.S. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach. Int. J. Radiat. Biol. 2016;92(3):132-139. DOI 10.3109/09553002.2016.1135263.

36. Volkov A.V. The efficiency of various application methods, forms, and dozes of zinc fertilizers for spring wheat grown on sod-podzolic soils. Dr. Sci. Diss. (Biol.). Moscow, 2015. (in Russian)

37. Wang J.W., Kong F., Liu R., Fan Q., Zhang X. Zinc in wheat grain, processing, and food. Front. Nutr. 2020;7:124. DOI 10.3389/fnut.2020.00124.

38. Waters B.M., Uauy C., Dubcovsky J., Grusak M.A. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J. Exp. Bot. 2009;60:4263-4274.

39. Welch R.M., Graham R.D. Breeding crops for enhanced micronutrient content. Plant Soil. 2002;245:205-214.

40. WHO. The World Health Report. Geneva: World Health Organization. Accessed June 1, 2017.

41. Xu Y., Diaoguo A., Dongcheng L., Aimin Z., Hongxing X., Bin L. Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crops Res. 2012;138: 57-62.

42. Zou C., Du Y., Rashid A., Ram H., Savasli E., Pieterse P.J., Ortiz-Monasterio I., Yazici A., Kaur C., Mahmood K., Singh S., Le Roux M.R., Kuang W., Onder O., Kalayci M., Cakmak I. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J. Agric. Food Chem. 2019;67(29):8096-8106. DOI 10.1021/acs.jafc.9b01829.


Review

Views: 884


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)