Chromatin remodeling in oligodendrogenesis
https://doi.org/10.18699/VJ21.064
Abstract
Oligodendrocytes are one type of glial cells responsible for myelination and providing trophic support for axons in the central nervous system of vertebrates. Thanks to myelin, the speed of electrical-signal conduction increases several hundred-fold because myelin serves as a kind of electrical insulator of nerve f ibers and allows for quick saltatory conduction of action potentials through Ranvier nodes, which are devoid of myelin. Given that different parts of the central nervous system are myelinated at different stages of development and most regions contain both myelinated and unmyelinated axons, it is obvious that very precise mechanisms must exist to control the myelination of individual axons. As they go through the stages of specification and differentiation – from multipotent neuronal cells in the ventricular zone of the neural tube to mature myelinating oligodendrocytes as well as during migration along blood vessels to their destination – cells undergo dramatic changes in the pattern of gene expression. These changes require precisely spatially and temporally coordinated interactions of various transcription factors and epigenetic events that determine the regulatory landscape of chromatin. Chromatin remodeling substantially affects transcriptional activity of genes. The main component of chromatin is the nucleosome, which, in addition to the structural function, performs a regulatory one and serves as a general repressor of genes. Changes in the type, position, and local density of nucleosomes require the action of specialized ATP-dependent chromatin-remodeling complexes, which use the energy of ATP hydrolysis for their activity. Mutations in the genes encoding proteins of the remodeling complexes are often accompanied by serious disorders at early stages of embryogenesis and are frequently identified in various cancers. According to the domain arrangement of the ATP-hydrolyzing subunit, most of the identified ATP-dependent chromatin-remodeling complexes are classified into four subfamilies: SWI/SNF, CHD, INO80/SWR, and ISWI. In this review, we discuss the roles of these subunits of the different subfamilies at different stages of oligodendrogenesis.
About the Authors
E. V. AntontsevaRussian Federation
Novosibirsk
N. P. Bondar
Russian Federation
Novosibirsk
References
1. Bargaje R., Alam M.P., Patowary A., Sarkar M., Ali T., Gupta S., Garg M., Singh M., Purkanti R., Scaria V., Sivasubbu S., Brahmachari V., Pillai B. Proximity of H2A.Z containing nucleosome to the transcription start site influences gene expression levels in the mammalian liver and brain. Nucleic Acids Res. 2012;40:8965-8978. DOI 10.1093/nar/gks665.
2. Barres B.A., Raff M.C. Control of oligodendrocyte number in the developing rat optic nerve. Neuron. 1994;12:935-942. DOI 10.1016/0896-6273(94)90305-0.
3. Bartholomew B. Regulating the chromatin landscape: structural and mechanistic perspectives. Annu. Rev. Biochem. 2014;83:671-696. DOI 10.1146/annurev-biochem-051810-093157.
4. Bartzokis G., Lu P.H., Heydari P., Couvrette A., Lee G.J., Kalashyan G., Freeman F., Grinstead J.W., Villablanca P., Finn J.P., Mintz J., Alger J.R., Altshuler L.L. Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individuals. Biol. Psychiatry. 2012;72:1026-1034. DOI 10.1016/j.biopsych.2012.07.010.
5. Bischof M., Weider M., Kuspert M., Nave K.-A., Wegner M. Brg1dependent chromatin remodelling is not essentially required during oligodendroglial differentiation. J. Neurosci. 2015;35:21-35. DOI 10.1523/JNEUROSCI.1468-14.2015.
6. Cai J., Qi Y., Hu X., Tan M., Liu Z., Zhang J., Li Q., Sander M., Qiu M. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron. 2005;45:41-53. DOI 10.1016/j.neuron.2004.12.028.
7. Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 2009;78:273-304. DOI 10.1146/annurev.biochem.77.062706.153223.
8. Clapier C.R., Iwasa J., Cairns B.R., Peterson C.L. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 2017;18:407-422. DOI 10.1038/nrm.2017.26.
9. Copray S., Huynh J.L., Sher F., Casaccia-Bonnefil P., Boddeke E. Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia. 2009;57:1579-1587. DOI 10.1002/glia.20881.
10. Dejana E., Betsholtz C. Oligodendrocytes follow blood vessel trails in the brain. Science. 2016;351:341-342. DOI 10.1126/science.aaf1139.
11. Do i T., Ogata T., Yamauchi J., Sawada Y., Tanaka S., Nagao M. Chd7 collaborates with Sox2 to regulate activation of oligodendrocyte precursor cells after spinal cord injury. J. Neurosci. 2017;37:10290-10309. DOI 10.1523/JNEUROSCI.1109-17.2017.
12. Dürr H., Körner C., Müller M., Hickmann V., Hopfner K.-P. X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell. 2005;121:363-373. DOI 10.1016/j.cell.2005.03.026.
13. Elsesser O., Fröb F., Küspert M., Tamm E.R., Fujii T., Fukunaga R., Wegner M. Chromatin remodeler Ep400 ensures oligodendrocyte survival and is required for myelination in the vertebrate central nervous system. Nucleic Acids Res. 2019;47:6208-6224. DOI 10.1093/nar/gkz376.
14. Emery B. Regulation of oligodendrocyte differentiation and myelination. Science. 2010;330:779-782. DOI 10.1126/science.1190927.
15. Gregath A., Lu Q.R. Epigenetic modifications – insight into oligodendrocyte lineage progression, regeneration, and disease. FEBS Lett. 2018;592:1063-1078. DOI 10.1002/1873-3468.12999.
16. He D., Marie C., Zhao C., Kim B., Wang J., Deng Y., Clavairoly A., Frah M., Wang H., He X., Hmidan H., Jones B.V., Witte D., Zalc B., Zhou X., Choo D.I., Martin D.M., Parras C., Lu Q.R. Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. Nat. Neurosci. 2016;19:678-689. DOI 10.1038/nn.4258.
17. Ho L., Crabtree G.R. Chromatin remodelling during development. Nature. 2010;463:474-484. DOI 10.1038/nature08911.
18. Hota S.K., Bruneau B.G. ATP-dependent chromatin remodeling during mammalian development. Development. 2016;143:2882-2897. DOI 10.1242/dev.128892.
19. Koreman E., Sun X., Lu Q.R. Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair. Mol. Cell Neurosci. 2018;87:18-26. DOI 10.1016/j.mcn.2017.11.010.
20. Kornberg R.D., Lorch Y. Primary role of the nucleosome. Mol. Cell. 2020;79:371-375. DOI 10.1016/j.molcel.2020.07.020.
21. Lebel C., Walker L., Leemans A., Phillips L., Beaulieu C. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage. 2008;40:1044-1055. DOI 10.1016/j.neuroimage.2007.12.053.
22. Marie C., Clavairoly A., Frah M., Hmidan H., Yan J., Zhao C., Van Steenwinckel J., Daveau R., Zalc B., Hassan B., Thomas J.-L., Gressens P., Ravassard P., Moszer I., Martin D.M., Lu Q.R., Parras C. Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proc. Natl. Acad. Sci. 2018;115:E8246-E8255. DOI 10.1073/pnas.1802620115.
23. Martin D.M. Chromatin remodeling in development and disease: focus on CHD7. PLoS Genet. 2010;6:e1001010. DOI 10.1371/journal.pgen.1001010.
24. Matsumoto S., Banine F., Feistel K., Foster S., Xing R., Struve J., Sherman L.S. Brg1 directly regulates Olig2 transcription and is required for oligodendrocyte progenitor cell specification. Dev. Biol. 2016;413:173-187. DOI 10.1016/j.ydbio.2016.04.003.
25. Matsumoto S., Banine F., Struve J., Xing R., Adams C., Liu Y., Metzger D., Chambon P., Rao M.S., Sherman L.S. Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev. Biol. 2006;289:372-383. DOI 10.1016/j.ydbio.2005.10.044.
26. Miller R.H. Regulation of oligodendrocyte development in the vertebrate CNS. Prog. Neurobiol. 2002;67:451-467. DOI 10.1016/S0301-0082(02)00058-8.
27. Mitew S., Hay C.M., Peckham H., Xiao J., Koenning M., Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience. 2014;276:29-47. DOI 10.1016/j.neuroscience.2013.11.029.
28. Mori S., Leblond C.P. Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats. J. Comp. Neurol. 1970;139:1-29. DOI 10.1002/cne.901390102.
29. Nave K.-A., Werner H.B. Myelination of the nervous system: mechanisms and functions. Annu. Rev. Cell Dev. Biol. 2014;30:503-533. DOI 10.1146/annurev-cellbio-100913-013101.
30. Orentas D.M., Miller R.H. The origin of spinal cord oligodendrocytes is dependent on local influences from the notochord. Dev. Biol. 1996; 177:43-53. DOI 10.1006/dbio.1996.0143.
31. Piaton G., Gould R.M., Lubetzki C. Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J. Neurochem. 2010;114(5):1243-1260. DOI 10.1111/j.1471-4159.2010.06831.x.
32. Pringle N.P., Yu W.-P., Guthrie S., Roelink H., Lumsden A., Peterson A.C., Richardson W.D. Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev. Biol. 1996;177:30-42. DOI 10.1006/dbio.1996.0142.
33. Randazzo F.M., Khavari P., Crabtree G., Tamkun J., Rossant J. brg1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev. Biol. 1994;161:229-242. DOI 10.1006/dbio.1994.1023.
34. Taveggia C., Feltri M.L., Wrabetz L. Signals to promote myelin formation and repair. Nat. Rev. Neurol. 2010;6:276-287. DOI 10.1038/nrneurol.2010.37.
35. Tekki-Kessaris N., Woodruff R., Hall A.C., Gaffield W., Kimura S., Stiles C.D., Rowitch D.H., Richardson W.D. Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development. 2001;128:2545-2554.
36. Tsai H.-H., Niu J., Munji R., Davalos D., Chang J., Zhang H., Tien A.-C., Kuo C.J., Chan J.R., Daneman R., Fancy S.P.J. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science. 2016;351:379-384. DOI 10.1126/science.aad3839.
37. Venkatesh S., Workman J.L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 2015;16: 178-189. DOI 10.1038/nrm3941.
38. Wilson B.G., Roberts C.W.M. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer. 2011;11:481-492. DOI 10.1038/nrc3068.
39. Young K.M., Psachoulia K., Tripathi R.B., Dunn S.-J., Cossell L., Attwell D., Tohyama K., Richardson W.D. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron. 2013;77:873-885. DOI 10.1016/j.neuron.2013.01.006.
40. Yu Y., Chen Y., Kim B., Wang H., Zhao C., He X., Liu L., Liu W., Wu L.M.N., Mao M., Chan J.R., Wu J., Lu Q.R. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell. 2013;152:248-261. DOI 10.1016/j.cell.2012.12.006.
41. Zhu X., Hill R.A., Dietrich D., Komitova M., Suzuki R., Nishiyama A. Age-dependent fate and lineage restriction of single NG2 cells. Development. 2011;138:745-753. DOI 10.1242/dev.047951.