Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Here and there: the double-side transgene localization

https://doi.org/10.18699/VJ21.068

Abstract

Random transgene integration is a powerful tool for developing new genome-wide screening approaches. These techniques have already been used for functional gene annotation by transposon-insertion sequencing, for identification of transcription factor binding sites and regulatory sequences, and for dissecting chromatin position effects. Precise localization of transgenes and accurate artifact filtration are essential for this type of method. To date, many mapping assays have been developed, including Inverse-PCR, TLA, LAM-PCR, and splinkerette PCR. However, none of them is able to ensure localization of both transgene’s flanking regions simultaneously, which would be necessary for some applications. Here we proposed a cheap and simple NGS-based approach that overcomes this limitation. The developed assay requires using intentionally designed vectors that lack recognition sites of one or a set of restriction enzymes used for DNA fragmentation. By looping and sequencing these DNA fragments, we obtain special data that allows us to link the two flanking regions of the transposon. This can be useful for precise insertion mapping and for screening approaches in the field of chromosome engineering, where chromosomal recombination events between transgenes occur in a cell population. To demonstrate the method’s feasibility, we applied it for mapping SB transposon integration in the human HAP1 cell line. Our technique allowed us to efficiently localize genomic transposon integrations, which was confirmed via PCR analysis. For practical application of this approach, we proposed a set of recommendations and a normalization strategy. The developed method can be used for multiplex transgene localization and detection of rearrangements between them.

About the Authors

P. A. Salnikov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



A. A. Khabarova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk



G. S. Koksharova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Novosibirsk



R. V. Mungalov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk



P. S. Belokopytova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Novosibirsk



I. E. Pristyazhnuk
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk



A. R. Nurislamov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Novosibirsk



P. Somatich
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk



M. M. Gridina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Novosibirsk



V. S. Fishman
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Novosibirsk



References

1. Akhtar W., de Jong J., Pindyurin A.V., Pagie L., Meuleman W., de Ridder J., Berns A., Wessels L.F., van Lohuizen M., van Steensel B. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell. 2013;154(4):914-927. DOI 10.1016/j.cell.2013.07.018.

2. Cain A.K., Barquist L., Goodman A.L., Paulsen I.T., Parkhill J., van Opijnen T. A decade of advances in transposon-insertion sequencing. Nat. Rev. Genet. 2020;21(9):526-540. DOI 10.1038/s41576-020-0244-x.

3. de Vree P.J., de Wit E., Yilmaz M., van de Heijning M., Klous P., Verstegen M.J., Wan Y., Teunissen H., Krijger P.H., Geeven G., Eijk P.P., Sie D., Ylstra B., Hulsman L.O., van Dooren M.F., van Zutven L.J., van den Ouweland A., Verbeek S., van Dijk K.W., Cornelissen M., Das A.T., Berkhout B., Sikkema-Raddatz B., van den Berg E., van der Vlies P., Weening D., den Dunnen J.T., Matusiak M., Lamkanfi M., Ligtenberg M.J., ter Brugge P., Jonkers J., Foekens J.A., Martens J.W., van der Luijt R., van Amstel H.K., van Min M., Splinter E., de Laat W. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol. 2014;32(10):1019-1025. DOI 10.1038/nbt.2959.

4. Deutschbauer A., Price M.N., Wetmore K.M., Shao W., Baumohl J.K., Xu Z., Nguyen M., Tamse R., Davis R.W., Arkin A.P. Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-wide fitness profiling across 121 conditions. PLoS Genet. 2011;7(11):e1002385. DOI 10.1371/journal.pgen.1002385.

5. Dymond J., Boeke J. The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioeng. Bugs. 2012;3(3):168-171. DOI 10.4161/bbug.19543.

6. Francke U., Hsieh C.L., Kelly D., Lai E., Popko B. Induced reciprocal translocation in transgenic mice near sites of transgene integration. Mamm. Genome. 1992;3(4):209-126. DOI 10.1007/BF00355721.

7. Friedrich M.J., Rad L., Bronner I.F., Strong A., Wang W., Weber J., Mayho M., Ponstingl H., Engleitner T., Grove C., Pfaus A., Saur D., Cadiñanos J., Quail M.A., Vassiliou G.S., Liu P., Bradley A., Rad R. Genome-wide transposon screening and quantitative insertion site sequencing for cancer gene discovery in mice. Nat. Protoc. 2017; 12(2):289-309. DOI 10.1038/nprot.2016.164.

8. Gabriel R., Kutschera I., Bartholomae C.C., von Kalle C., Schmidt M. Linear amplification mediated PCR-localization of genetic elements and characterization of unknown flanking DNA. J. Vis. Exp. 2014; (88):e51543. DOI 10.3791/51543.

9. Goh K.G.K., Phan M.D., Forde B.M., Chong T.M., Yin W.F., Chan K.G., Ulett G.C., Sweet M.J., Beatson S.A., Schembri M.A. Genome-wide discovery of genes required for capsule production by uropathogenic Escherichia coli. mBio. 2017;8(5):e01558-17. DOI 10.1128/mBio.01558-17.

10. Goodman A.L., Wu M., Gordon J.I. Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat. Protoc. 2011;6(12):1969-1980. DOI 10.1038/nprot.2011.417.

11. Hochrein L., Mitchell L.A., Schulz K., Messerschmidt K., MuellerRoeber B. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast. Nat. Commun. 2018;9(1):1931. DOI 10.1038/s41467-017-02208-6.

12. Laboulaye M.A., Duan X., Qiao M., Whitney I.E., Sanes J.R. Mapping transgene insertion sites reveals complex interactions between mouse transgenes and neighboring endogenous genes. Front. Mol. Neurosci. 2018;11:385. DOI 10.3389/fnmol.2018.00385.

13. Li H., Durbin R. Fast and accurate short read alignment with BurrowsWheeler transform. Bioinformatics. 2009;25(14):1754-1760. DOI 10.1093/bioinformatics/btp324.

14. Li S., Jia S., Hou L., Nguyen H., Sato S., Holding D., Cahoon E., Zhang C., Clemente T., Yu B. Mapping of transgenic alleles in soybean using a nanopore-based sequencing strategy. J. Exp. Bot. 2019; 70(15):3825-3833. DOI 10.1093/jxb/erz202.

15. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10-12. DOI 10.14806/ej.17.1.200.

16. Moudgil A., Wilkinson M.N., Chen X., He J., Cammack A.J., Vasek M.J., Lagunas T.J., Qi Z.,Lalli M.A., Guo C., Morris S.A., Dougherty J.D., Mitra R.D. Self-reporting transposons enable simultaneous readout of gene expression and transcription factor binding in single cells. Cell. 2020;182(4):992-1008.e21. DOI 10.1016/ j.cell.2020.06.037.

17. Nicholls P.K., Bellott D.W., Cho T.J., Pyntikova T., Page D.C. Locating and characterizing a transgene integration site by nanopore sequencing. G3 (Bethesda). 2019;9(5):1481-1486. DOI 10.1534/g3.119.300582.

18. Park D., Park S.H., Ban Y.W., Kim Y.S., Park K.C., Kim N.S., Kim J.K., Choi I.Y. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data. BMC Biotechnol. 2017;17(1):67. DOI 10.1186/s12896-017-0386-x.

19. Pindyurin A.V., de Jong J., Akhtar W. TRIP through the chromatin: a high throughput exploration of enhancer regulatory landscapes. Genomics. 2015;106(3):171-177. DOI 10.1016/j.ygeno.2015.06.009.

20. Quinlan A.R., Hall I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841-842. DOI 10.1093/bioinformatics/btq033.

21. Robinson J.T., Thorvaldsdóttir H., Winckler W., Guttman M., Lander E.S., Getz G., Mesirov J.P. Integrative genomics viewer. Nat. Biotechnol. 2011;29(1):24-26. DOI 10.1038/nbt.1754.

22. Smith A.J., De Sousa M.A., Kwabi-Addo B., Heppell-Parton A., Impey H., Rabbitts P. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat. Genet. 1995;9(4):376-385. DOI 10.1038/ng0495-376.

23. Uemura M., Niwa Y., Kakazu N., Adachi N., Kinoshita K. Chromosomal manipulation by site-specific recombinases and fluorescent protein-based vectors. PLoS One. 2010;5(3):e9846. DOI 10.1371/journal.pone.0009846.

24. Wang H., Mayhew D., Chen X., Johnston M., Mitra R.D. “Calling cards” for DNA-binding proteins in mammalian cells. Genetics. 2012;190(3):941-949. DOI 10.1534/genetics.111.137315.

25. Wang W., Bartholomae C.C., Gabriel R., Deichmann A., Schmidt M. The LAM-PCR method to sequence LV integration sites. Methods Mol. Biol. 2016;1448:107-120. DOI 10.1007/978-1-4939-3753-0_9.

26. Zastrow-Hayes G.M., Lin H., Sigmund A.L., Hoffman J.L., Alarcon C.M., Hayes K.R., Richmond T.A., Jeddeloh J.A., May G.D., Beatty M.K. Southern-by-sequencing: A robust screening approach for molecular characterization of genetically modified crops. Plant Genome. 2015;8(1):1-15. DOI 10.3835/plantgenome2014.08.0037.

27. Zhang R., Yin Y., Zhang Y., Li K., Zhu H., Gong Q., Wang J., Hu X., Li N. Molecular characterization of transgene integration by nextgeneration sequencing in transgenic cattle. PLoS One. 2012;7(11): e50348. DOI 10.1371/journal.pone.0050348.


Review

Views: 1361


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)