The interphase period “germination–heading” of 8x and 6x triticale with different dominant Vrn genes
https://doi.org/10.18699/VJ21.071
Abstract
The existing spring forms of wheat-rye amphiploids are characterized by late maturity due to the long duration of the interphase period “germination–heading”. The manifestation of this trait is influenced by Vrn-1 genes. Their dominant alleles also determine the spring type of development. The results of studying the interphase period “germination–heading” of spring octaploid and hexaploid forms of triticale created for use in research and breeding programs under the conditions of forest-steppe of Western Siberia are given in this article. The interphase period of the primary forms 8xVrnA1, 8xVrnB1 and 8xVrnD1 obtained by artificial doubling of the chromosome number of the wheat-rye hybrids made by pollination of three lines of the soft wheat ‘Triple Dirk’ – donors of different dominant Vrn-1 genes – by a winter rye variety ‘Korotkostebel’naya 69’ was determined under the field conditions in the nursery of octaploid (8x) triticale. In the nursery of hexaploid triticale, this trait was studied in the populations of hybrids obtained by hybridization of these three primary forms of octaploid triticale with the hexaploid winter triticale variety ‘Sears 57’. In the offspring of crossing 8хVrnD1× ‘Sears 57’, spring genotypes of 6x triticale bearing Vrn-D1 were selected. This fact was determined by PСR. It means that the genetic material from the chromosome of the fifth homeologous group of the D genome of the bread wheat is included in the plant genotypes. This genome is absent in the winter 6x triticale ‘Sears 57’. The grain content of spikes of the created hexaploid forms of triticale is superiour to that of the maternal octaploid triticale forms. It was shown that plants of the hybrid populations 8xVrnA1× ‘Sears 57’ and 8xVrnD1× ‘Sears 57’ carrying the dominant alleles Vrn-A1a and Vrn-D1a, respectively, have a shorter duration of the “germination–heading” interphase period than the initial parental forms of primary 8x triticale. The short interphase period of “germination–heading” of the 6x triticale is a valuable breading trait for the creation of early maturing and productive genotypes of triticale.
Keywords
About the Authors
P. I. StepochkinRussian Federation
Krasnoobsk, Novosibirsk region
A. I. Stasyuk
Russian Federation
Novosibirsk
References
1. Cheng Z.-J., Murata M. Loss chromosomes 2R and 5RS in octoploid triticale selected for agronomic traits. Genes. Genet. Syst. 2002;7: 23-29.
2. Dixon L., Karsai I., Kiss T., Adamski N., Liu Z., Ding Y., Allard V., Boden S., Griffiths S. VERNALIZATION1 controls developmental responses of winter wheat under high ambient temperatures. Development. 2019;146(3):dev172684. DOI 10.1242/dev.172684.
3. Dospekhov B.A. Methodology of Field Experiments with the Fundamentals of Statistical Processing of Results. Moscow, 1985. (in Russian)
4. Emtseva M.V., Efremova T.T., Arbuzova V.S. The influence of Vrn-B1a and Vrn-B1c alleles on the length of developmental phases of substitution and near-isogenic lines of common wheat. Russ. J. Genet. 2013;49(5):545-552. DOI 10.1134/S1022795413050050.
5. Fu D., Szücs P., Yan L., Helguera M., Skinner J.S., Zitzewitz J., Hayes P.M., Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Genet. Genomics. 2005;273:54-65.
6. Hao M., Luo J., Zhang L., Yuan Z., Yang Y., Wu M. Production of hexaploid triticale by a synthetic hexaploid wheat-rye hybrid method. Euphytica. 2013;193:347-357. DOI 10.1007/s10681-013-0930-2.
7. Kaminskaya L.N., Koren L.V., Leonova I.N., Adonina I.G., Khotylеva L.V., Salina E.A. Development of triticale lines tagged with Vrn genes and their molecular-genetic study. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2005;9(4):481-489. (in Russian)
8. Kippes N., Debernardi J., Vasquez-Gross H., Akpinar B., Budak H., Kato K., Chao S., Akhunov E., Dubcovsky J. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc. Natl. Acad. Sci. USA. 2015;112(39):E5401-E5410. DOI 10.1073/pnas.1514883112.
9. Kippes N., Zhu J., Chen A., Vanzetti L., Lukaszewski A., Nishida H., Kato K., Dvorak J., Dubcovsky J. Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Mol. Genet. Genomics. 2014;289:47-62. DOI 10.1007/s00438-013-0788-y.
10. Košner J., Pánková K. Chromosome substitutions with dominant loci Vrn-1 and their effect on developmental stages of wheat. Czech J. Genet. Plant Breed. 2004;2(40):37-44.
11. Krolow K.-D. Aneuploidie und Fertilitat bei amphidiploiden WeizenRoggen-Bastarden (Triticale). 1. Aneuploidie und Selection auf Fertilitat bei oktoploiden Triticale-Formen. Z. Pf lanzenzucht. 1962; 48(2):177-196.
12. Krolow K.-D. Aneuploidie und Fertilitat bei amphidiploiden WeizenRoggen-Bastarden (Triticale). 2. Aneuploidie und Fertilitats-Untersuchungen an einer oktoploiden Triticale-Form mit starker Abregulierungstendenz. Z. Pf lanzenzucht. 1963;49(3):210-242.
13. Kruchinina Y.V., Efremova T.T., Chumanova E.V., Popova O.M., Arbuzova V.C., Pershina L.A. Influence of Vrn-B1 alleles on the phase duration of development of substituted and isogenic wheat lines under natural long day. Mezhdunarodnyy Zhurnal Prikladnykh i Fundamentalnykh Issledovaniy = International Journal of Applied and Fundamental Research. 2017;1:278-286. (in Russian).
14. Li H., Guo X., Wang C., Ji W. Spontaneous and divergent hexaploid triticales derived from common wheat × rye by complete elimination of D-genome chromosomes. PLoS One. 2015;10(3):e0120421. DOI 10.1371/journal.pone.0120421.
15. Likhenko I.E., Stasyuk A.I., Shcherban’A.B., Zyryanova A.F., Likhenko N.I., Salina E.A. Study of allelic composition of Vrn-1 and Ppd-1 genes in early-ripening and middle-early varieties of spring soft wheat in Siberia. Russ. J. Genet. Appl. Res. 2015;5(3):198-207. DOI 10.1134/S2079059715030107.
16. Lukaszewski A.J., Gustafson J.P. Cytogenetics of triticale. Plant Breed. Rev. 1987;5:41-93.
17. Muterko A., Balashova I., Cokram J., Kalrndar R., Sivolap Y. The new wheat vernalization response allele Vrn-D1s is caused by DNA transposon insertion in the first intron. Plant Mol. Biol. Rep. 2015; 33:294-303. DOI 10.1007/s11105-014-0750-0.
18. Muterko A., Kalendar R., Salina E. Novel alleles of the VERNALIZATION1 genes in wheat are associated with modulation of DNA curvature and flexibility in the promoter region. BMS Plant Biol. 2016;16(Suppl.1):9. DOI 10.1186/s12870-015-0691-2.
19. Plaschke J., Börner A., Xie D.X., Koebner R.M.D., Schlegel R., Gale M.D. RFLP mapping of genes affecting plant height and growth habit in rye. Theor. Appl. Genet. 1993;85:1049-1054.
20. Potokina E.K., Koshkin V.A., Alekseeva E.A., Matvienko I.I., Bespalova L.A., Filobok V.A. The combination of the Ppd and Vrn gene alleles determines the heading time in common wheat varieties. Russ. J. Genet. Appl. Res. 2012;2(4):311-318. DOI 10.1134/S2079059712040089.
21. Pugsley A.T. A genetic analysis of the spring-winter habit of growth in wheat. Aust. J. Agric. Res. 1971;22:21-31.
22. Pugsley A.T. Additional genes inhibiting winter habit in wheat. Euphytica. 1972;21:547-552.
23. Shcherban A., Börner A., Salina E. Effect of VRN-1 and PPD-D1 genes on heading time in European bread wheat cultivars. Plant Breed. 2015;134(1):49-55. DOI 10.1111/pbr.12223.
24. Shcherban A., Efremova T., Salina E. Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Mol. Breed. 2012;29:675-685.
25. Stepochkin P.I. The appearance of 6x triticale plants among the C2 offspring of homogenomic 8x triticales. Genetika = Genetics (Moscow). 1978;14(9):1658-1659. (in Russian)
26. Stepochkin P.I. Development and study of a set of triticale forms as to the Vrn genes. Sibirskiy Vestnik Selskokhozyaystvennoy Nauki = Siberian Herald of Agricultural Sciences. 2009;11:26-32. (in Russian)
27. Stepochkin P.I. Study of duration of the “shoots–earing” phase of the spring triticale early generations hybrids of different ploidy levels. Vestnik APK Stavropolya = Agricultural Bulletin of Stavropol Region. 2017;1(25):148-152. (in Russian)
28. Stepochkin P.I., Emtseva M.V. Study of the interphase period “shoots– earing” of the initial parental forms and hybrids of triticale with different Vrn genes. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(5):530-533. DOI 10.18699/VJ17.22-о. (in Russian)
29. Tyslenko A., Zuev D., Skatova S., Shvidchenko V. Rossica – new stern spring triticale cultivar for field crop in Russia. 2016. Available at: https://ipi1.ru/images/PDF/2016/73/rossika-novyj-kormovoj-sort.pdf (in Russian)
30. Vettel F.K. Mutationsversuche an Weizen-Roggen-Bastarden. 2. Zitologische Untersuchung und Fertilitats – Bestimmungen an Triticale Rimpau und einigen Mutanten. Zuchter. 1960а;30(5):181- 189.
31. Vettel F.K. Mutationsversuche an Weizen-Roggen-Bastarden (Triticale). 3. Mutationsauslosung bei Triticale Meister und Triticale 8324. Zuchter. 1960b;30(8):313-329.
32. Worland A.J. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica. 1996;89:49-57.
33. Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M., Sanchez A., Valarik M., Yasuda S., Dubcovsky J. The wheat and barley vernalization gene VRN-3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA. 2006;104:19581-19586.
34. Yan L., Helguera M., Kato K., Fukuyama S., Sherman J., Dubcovsky J. Allelic variation at the VRN1 promoter region in polyploidy wheat. Theor. Appl. Genet. 2004;109:1677-1686.
35. Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. Positional cloning of wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA. 2003;100:6263-6268.
36. Yoshida T., Nishida H., Zhu J., Nitcher R., Distelfeld A., Akashi Y., Kato K., Dubcovsky J. Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor. Appl. Genet. 2010;120:543-552.