Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Negative heterosis for meiotic recombination rate in spermatocytes of the domestic chicken Gallus gallus

https://doi.org/10.18699/VJ21.075

Abstract

Benefits and costs of meiotic recombination are a matter of discussion. Because recombination breaks allele combinations already tested by natural selection and generates new ones of unpredictable fitness, a high recombination rate is generally beneficial for the populations living in a fluctuating or a rapidly changing environment and costly in a stable environment. Besides genetic benefits and costs, there are cytological effects of recombination, both positive and negative. Recombination is necessary for chromosome synapsis and segregation. However, it involves a massive generation of double-strand DNA breaks, erroneous repair of which may lead to germ cell death or various mutations and chromosome rearrangements. Thus, the benefits of recombination (generation of new allele combinations) would prevail over its costs (occurrence of deleterious mutations) as long as the population remains sufficiently heterogeneous. Using immunolocalization of MLH1, a mismatch repair protein, at the synaptonemal complexes, we examined the number and distribution of recombination nodules in spermatocytes of two chicken breeds with high (Pervomai) and low (Russian Crested) recombination rates and their F1 hybrids and backcrosses. We detected negative heterosis for recombination rate in the F1 hybrids. Backcrosses to the Pervomai breed were rather homogenous and showed an intermediate recombination rate. The differences in overall recombination rate between the breeds, hybrids and backcrosses were mainly determined by the differences in the crossing over number in the seven largest macrochromosomes. The decrease in recombination rate in F1 is probably determined by difficulties in homology matching between the DNA sequences of genetically divergent breeds. The suppression of recombination in the hybrids may impede gene flow between parapatric populations and therefore accelerate their genetic divergence.

 

About the Authors

L. P. Malinovskaya
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



K. V. Tishakova
Novosibirsk State University; Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



T. I. Bikchurina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



A. Yu. Slobodchikova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



N. Yu. Torgunakov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



A. A. Torgasheva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



Y. A. Tsepilov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



N. A. Volkova
L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Dubrovitsy, Moscow region



P. M. Borodin
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Anderson L.K., Reeves A., Webb L.M., Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999;151(4):15691579.

2. Baack E.J., Rieseberg L.H. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev. 2007;17(6):513-518.

3. Berchowitz L.E., Copenhaver G.P. Genetic interference: don’t stand so close to me. Curr. Genom. 2010;11(2):91.

4. Bi Y., Ren X., Yan C., Shao J., Xie D., Zhao Z. A genome-wide hybrid incompatibility landscape between Caenorhabditis briggsae and C. nigoni. PLoS Genet. 2015;11(2):1-26. DOI 10.1371/journal.pgen.1004993.

5. Bikchurina T., Tishakova K., Kizilova E., Romanenko S., Serdyukova N., Torgasheva A., Borodin P. Chromosome synapsis and recombination in male-sterile and female-fertile interspecies hybrids of the dwarf hamsters (Phodopus, Cricetidae). Genes (Basel). 2018;9(5): 227. DOI 10.3390/genes9050227.

6. Chen W., Jinks-Robertson S. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics. 1999;151(4):1299-1313. DOI 10.1093/genetics/151.4.1299.

7. Chen Z.J. Genomic and epigenetic insights into the molecular bases of heterosis. Nat. Rev. Genet. 2013;14(7):471-482. DOI 10.1038/nrg3503.

8. Damas J., O’Connor R., Farré M., Lenis V.P.E., Martell H.J., Mandawala A., Fowler K., Joseph S., Swain M.T., Griffin D.K., Larkin D.M. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res. 2017;27(5):875-884. DOI 10.1101/gr.213660.116.

9. Davenport K.M., McKay S., Fahey A.G., Gill C., Murdoch B.M. Meiotic recombination differences in rams from three breeds of sheep in the US. Cytogenet. Genome Res. 2018;156(2):106-116. DOI 10.1159/000493175.

10. Fridman E. Consequences of hybridization and heterozygosity on plant vigor and phenotypic stability. Plant Sci. 2015;232:35-40. DOI 10.1016/j.plantsci.2014.11.014.

11. Froenicke L., Anderson L.K., Wienberg J., Ashley T. Male mouse recombination maps for each autosome identified by chromosome painting. Am. J. Hum. Genet. 2002;71(6):1353-1368.

12. Gibbs R.A., Taylor J.F., Van Tassell C.P., Barendse W., Eversole K.A., Gill C.A., Green R.D., …, Bradley D.G., Da Silva M.B., Lau L.P.L., Liu G.E., Lynn D.J., Panzitta F., Dodds K.G. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science. 2009;324(5926):528-532. DOI 10.1126/science.1167936.

13. Gorlov I.P., Gorlova O.Y. Cost-benefit analysis of recombination and its application for understanding of chiasma interference. J. Theor. Biol. 2001;213(1):1-8.

14. Hartfield M., Keightley P.D. Current hypotheses for the evolution of sex and recombination. Integr. Zool. 2012;7(2):192-209. DOI 10.1111/j.1749-4877.2012.00284.x.

15. Hassold T., Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2001;2(4):280-291. DOI 10.1038/35066065.

16. Hunter N., Chambers S.R., Louis E.J., Borts R.H. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid. EMBO J. 1996;15(7):1726-1733. DOI 10.1002/j.1460-2075.1996.tb00518.x.

17. Johnston S.E., Bérénos C., Slate J., Pemberton J.M. Conserved genetic architecture underlying individual recombination rate variation in a wild population of soay sheep (Ovis aries). Genetics. 2016; 203(1):583-598. DOI 10.1534/genetics.115.185553.

18. Koehler K.E., Hawley R.S., Sherman S., Hassold T. Recombination and nondisjunction in humans and flies. Hum. Mol. Genet. 1996; 5(Suppl_1):1495-1504. DOI 10.1093/hmg/5.Supplement_1.1495.

19. Kondrashov A.S. Classification of hypotheses on the advantage of amphimixis. J. Hered. 1993;84(5):372-387. DOI 10.1093/oxfordjournals.jhered.a111358.

20. Kong A., Barnard J., Gudbjartsson D.F., Thorleifsson G., Jonsdottir G., Sigurdardottir S., Richardsson B., Jonsdottir J., Thorgeirsson T., Frigge M.L., Lamb N.E., Sherman S., Gulcher J.R., Stefansson K. Recombination rate and reproductive success in humans. Nat. Genet. 2004;36:1203. DOI 10.1038/ng1445.

21. Lenormand T., Otto S.P. The evolution of recombination in a heterogeneous environment. Genetics. 2000;156(1):423-438.

22. Liehr T., Kreskowski K., Ziegler M., Piaszinski K., Rittscher K. The standard FISH procedure. In: Liehr T. (Ed.). Fluorescence In Situ Hybridization (FISH). Application Guide. Berlin; Heidelberg: Springer, 2017;109-118. DOI 10.1007/978-3-662-52959-1_9.

23. Lipinski M.J., Froenicke L., Baysac K.C., Billings N.C., Leutenegger C.M., Levy A.M., Longeri M., Niini T., Ozpinar H., Slater M.R., Pedersen N.C., Lyons L.A. The ascent of cat breeds: Genetic evaluations of breeds and worldwide random-bred populations. Genomics. 2008;91(1):12-21. DOI 10.1016/j.ygeno.2007.10.009.

24. Malinovskaya L.P., Tishakova K.V., Volkova N.A., Torgasheva A.A., Tsepilov Y.A., Borodin P.M. Interbreed variation in meiotic recombination rate and distribution in the domestic chicken Gallus gallus. Arch. Anim. Breed. 2019;62(2):403.

25. Otto S.P., Lenormand T. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 2002;3(4):252-261.

26. Otto S.P., Michalakis Y. The evolution of recombination in changing environments. Trends Ecol. Evol. 1998;13(4):145-151. DOI 10.1016/S0169-5347(97)01260-3.

27. Paronyan I.A., Yurchenko O.P. Domestic fowl. In: USSR Dmitriev N.G., Ernst L.K. (Eds.). Animal Genetic Resources of the Food and Agriculture Organization of the United Nations. Rome. FAO Animal Production and Health. 1989; Paper 65, Ch. 13:437-468.

28. Payseur B.A. Using differential introgression in hybrid zones to identify genomic regions involved in speciation. Mol. Ecol. Resour. 2010;10(5):806-820. DOI 10.1111/j.1755-0998.2010.02883.x.

29. Peters A.H., Plug A.W., van Vugt M.J., de Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 1997;5(1):66-68.

30. Pigozzi M.I. The chromosomes of birds during meiosis. Cytogenet. Genome Res. 2016;150(2):128-138. DOI 10.1159/000453541.

31. Radman M., Wagner R. Mismatch recognition in chromosomal interactions and speciation. Chromosoma. 1993;102(6):369-373. DOI 10.1007/BF00360400.

32. Raffoux X., Bourge M., Dumas F., Martin O.C., Falque M. Role of cis, trans, and inbreeding effects on meiotic recombination in Saccharomyces cerevisiae. Genetics. 2018;210(4):1213-1226. DOI 10.1534/genetics.118.301644.

33. Reeves A. MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome. 2001;44(3):439-443.

34. Ren X., Li R., Wei X., Bi Y., Ho V.W.S., Ding Q., Xu Z., Zhang Z., Hsieh C.L., Young A., Zeng J., Liu X., Zhao Z. Genomic basis of recombination suppression in the hybrid between Caenorhabditis briggsae and C. nigoni. Nucleic Acids Res. 2018;46(3):1295-1307. DOI 10.1093/nar/gkx1277.

35. Rieseberg L.H., Whitton J., Gardner K. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics. 1999;152:713-727.

36. Rybnikov S., Frenkel Z., Korol A.B. The evolutionary advantage of fitness-dependent recombination in diploids: A deterministic mutation–selection balance model. Ecol. Evol. 2020;10(4):2074-2084. DOI 10.1002/ece3.6040.

37. Sandor C., Li W., Coppieters W., Druet T., Charlier C., Georges M. Genetic variants in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLoS Genet. 2012; 8(7):e1002854. DOI 10.1371/journal.pgen.1002854.

38. Segura J., Ferretti L., Ramos-Onsins S., Capilla L., Farré M., Reis F., Oliver-Bonet M., Fernández-Bellón H., Garcia F., Garcia-Caldés M., Robinson T.J., Ruiz-Herrera A. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference. Proc. Biol. Sci. 2013; 280(1771):20131945. DOI 10.1098/rspb.2013.1945.

39. Torgasheva A.A., Borodin P.M. Cytological basis of sterility in male and female hybrids between sibling species of grey voles Microtus arvalis and M. levis. Sci. Rep. 2016;6:36564. DOI 10.1038/srep36564.

40. Trifonov V.A., Vorobieva N.N., Rens W. FISH with and without COT1 DNA. In: Liehr T. (Ed.). Fluorescence In Situ Hybridization (FISH) – Application Guide. Berlin; Heidelberg: Springer, 2009; 99-109. DOI 10.1007/978-3-540-70581-9_9.

41. Turner J.M.A. Meiotic silencing in mammals. Annu. Rev. Genet. 2015; 49:395-412. DOI 10.1146/annurev-genet-112414-055145.

42. Zickler D., Kleckner N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb. Perspect. Biol. 2015;7(6): a016626. DOI 10.1101/cshperspect.a016626.


Review

Views: 1243


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)