Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

АНАЛИЗ ВЗАИМОДЕЙСТВИЯ АЛЛЕЛЕЙ ГЕНОВ ЛИПИДНОГО ОБМЕНА ПРИ ДИСЛИПИДЕМИИ

Аннотация

В клинической практике часто используют показатели липидного обмена. К его нарушениям (дислипидемии) относят повышение уровня общего холестерина (ОХС), триглицеридов (ТГ), а также изменение ряда других показателей, являющихся результатом нарушения синтеза, транспорта и расщепления липопротеинов. Клиническая значимость метаболических нарушений, объединенных рамками дислипидемии, ассоциируется, в первую очередь, с высоким риском развития сердечно-сосудистых заболеваний, сахарного диабета второго типа и ожирения. Исследована связь SNP следующих генов: G-2548A в промоторной области гена лептина (LEP), A223G в 4-м экзоне гена рецептора лептина (LEPR), Т495G в 8-м интроне гена липопротеинлипазы (LPL), C34G в 8-м экзоне гена ядерного рецептора (PPARG), с нарушениями липидного обмена, и показан их кумулятивный эффект в развитии дислипидемии.

Об авторах

И. В. Николаев
Федеральное государственное бюджетноеобразовательное учреждение высшего профессионального образования «Башкирский государственный педагогический университет им. М. Акмуллы»
Россия


Р. В. Мулюкова
Федеральное государственное бюджетноеобразовательное учреждение высшего профессионального образования «Башкирский государственный педагогический университет им. М. Акмуллы»
Россия


Л. Р. Каюмова
Федеральное государственное бюджетноеобразовательное учреждение высшего профессионального образования «Башкирский государственный педагогический университет им. М. Акмуллы»
Россия


Е. В. Воробьева
Федеральное государственное бюджетноеобразовательное учреждение высшего профессионального образования «Башкирский государственный педагогический университет им. М. Акмуллы»
Россия


В. Ю. Горбунова
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Башкирский государственный педагогический университет им. М. Акмуллы»
Россия


Список литературы

1. Даренская М.А., Колесникова Л.И., Бардымова Т.П. и др. Закономерности изменений показателей процесса пероксидации липидов у практически здоровых в различные периоды становления репродуктивной системы // Бюл. ВСНЦ СО РАМН. 2006. № 1 (47). С. 119–122.

2. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Рекомендации экспертов Всероссийского научного общества кардиологов (четвертый пересмотр). М., 2009. 19 с.

3. Маниатис Т., Фрич Э., Сэмбрук Дж. Молекулярное клонирование. М.: Мир, 1984. С. 220–228.

4. Марри Р., Греннер Д., Мейес П., Родуэлл В. Б. Биохимия человека. М.: Мир, 1993. 384 с.

5. Мельниченко Г.А. Ожирение в практике эндокринолога // Русский медицинский журнал. 2001. Т. 9. Вып. 2. С. 61–74.

6. Ребров А.П., Гайдукова И.З. Особенности дислипидемии при псориатическом артрите: взаимосвязь с атеросклерозом, факторами сердечно-сосудистого риска и системным воспалением // Саратовский научно-медицинский журнал. 2010. Т. 6. Вып. 3. С. 51–55.

7. Ahluwalia M., Evans M., Morris K. et al. // The infl uence of the Pro12Ala mutation of the PPAR-gamma receptor gene on metabolic and clinical characteristics in treatment-naпve patients with type 2 diabetes // Diabetes Obes. Metab. 2002. No. 4 (6). P. 376–378.

8. Barros R.P., Gustafsson J.A. Estrogen receptors and the metabolic network // Cell Metab. 2011. No. 14 (3). P. 289–299.

9. Bartsch D., Casadio A., Karl K.A., Serodio P., Kandel E.R. CREB1 encodes a nuclear activator, a repressor, and a cytoplasmic modulator that form a regulatory unit critical for long-term facilitation // Cell. 1998. Nо. 95. P. 211–223.

10. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM // Diabetes. 1997. Nо. 46. P. 3–10.

11. Carrillo-Vázquez J.P., Chimal-Vega B., Zamora-Lъpez B. Stru-ctural consequences of the polymorphism Q223R in the human leptin receptor: A molecular dynamics study // Am. J. Agric. Biol. Sciences. 2013. Nо. 8 (3). P. 239–248.

12. Constantin A., Costache G., Sima A. et al. Leptin G-2548A and leptin receptor Q223R gene polymorphisms are not associated with obesity in Romanian subjects // Biochem. Biophys. Res. Commun. 2010. No. 391 (1). P. 282–286.

13. Cooper A., Spirin V., Schmidt S. et al. Сommon single-nucleotide polymorphisms act in concert to affect plasma levels of high-density lipoprotein cholesterol // Am. J. Hum. Genet. 2007. Nо. 81. Р. 1298–1303.

14. Després J.P., Couillard C., Gagnon J. et al. Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the health, risk factors, exercise training, and genetics (heritage) family study // Arterioscler. Thromb. Vasc. Biol. 2000. Nо. 20. P. 1932–1938.

15. Duarte S., Francischetti E., Genelhu V. et al. LEPR p.Q223R, beta3-AR p.W64R and LEP c.-2548G>A gene variants in obese Brazilian subjects // Genet. Mol. Res. 2007. Nо. 6 (4). P. 1035–1043.

16. Faulds M.H., Zhao C. et al. The diversity of sex steroid action: regulation of metabolism by estrogen signaling // Journal Endocrinology. 2012. Nо. 212. P. 3–12.

17. Jeninga E.H., Gurnell M., Kalkhoven E. Functional implications of genetic variation in human PPARg // Trends in Endocrinology and Metabolism. 2009. V. 20. No. 8. P. 380–387.

18. Gasteiger E., Hoogland C., Gattiker A. et al. Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook. T.: Humana Press, 2005. P. 571–607.

19. Guruprasad K., Reddy B.V., Pandit M.W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence // Protein Eng. 1990. Nо. 4. P. 155–161.

20. Hayden M.R., Henderson H. The molecular biology and genetics of human lipoprotein lipase. Lipoproteins in Health and Disorder. L., 1999. Р. 132–137.

21. Heinzmann C., Kirchgessner T., Lusis A. DNA polymorphism haplotypes of the human lipoprotein lipase gene // Hum. Genet. 1991. Nо. 86. P. 578–584.

22. Herzig S., Hedrick S., Morantte I. et al. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ // Nature. 2003. Nо. 426. P. 190–193.

23. Ikai A.J. Thermostability and aliphatic index of globular proteins // J. Biochem. 1980. Nо. 88. P. 1895–1898.

24. Kathiresan S., Melander O., Anevski D. et al. Рolymorphisms associated with cholesterol and risk of cardiovascular events // New Eng. J. Med. 2008. Nо. 358. P. 1240–1249.

25. Laakso M. Gene variants, insulin resistance, and dyslipidemia // Curr. Opin. Lipidol. 2004. V. 2. No. 15. P. 115–120.

26. Langdahl B.L., Ralston S.H., Grant S.F., Eriksen E.F. An Spl binding site polymorphism in the COLIA1 gene predicts osteoporotic fractures in both men and women // J. Bone Miner Res. 1998. Nо. 13 (9). P. 1384–1389.

27. Ma Y.Q., Thomas G.N., Ng M. The lipoprotein lipase gene HindIII polymorphism is associated with lipid levels in early-onset type 2 diabetic patients. // Metabolism. 2003. Nо. 52 (3). P. 338–343.

28. Mantzoros C.S. Leptin and the hypothalamus: neuroendocrine control of food intake // Mol. Psychiatry. 2004. V. 4. Р. 8–12.

29. Mathew C.C. The isolation of high molecular weight eukaryotic DNA // Methods molecular biology. N.Y., 1984. V. 2. P. 31–34.

30. Meirhaeghe A., Cottel D., Amouyel P., Dallongeville J. Association between peroxisome proliferator-activated receptor γ haplotypes and the metabolic syndrome in French men and women // Diabetes. 2005. No. 54. P. 3043–3048.

31. Moore J.H. et al. A fl exible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility // J. Theoretical Biology. 2006. Nо. 241. P. 252–261.

32. Montagner A., Rando G., Degueurce G. et al. New insights into the role of PPARs // Prostaglandins, Leukot, Essent. Fatty Acids. 2011. V. 85. No. 5. P. 235–243.

33. Mullis K.B., Saiki R.K., Scharf S. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia // Science. 1985. V. 230. No. 4732. P. 487–491.

34. Park K.S., Shin H.D., Park B.L. et al. Polymorphisms in the leptin receptor (LEPR) – putative association with obesity and T2DM // Genet. 2006. No. 51. P. 85–91.

35. Pipel Y., Lancet D. The variable and conserved interfaces of modeled olfactory receptor proteins // Protein Science. 1999. No. 8. P. 969–977.

36. Rice P., Longden I., Bleasby A. The European Molecular Biology Open Software Suite // Trends in Genetics. No. 16 (6). 2000. P. 276–277.

37. Schulze P., Kratzsch J. Leptin as a new diagnostic tool in chronic heart failure // Clin.Chim. Acta. 2005. V. 362. P. 1–11.

38. Schwartz M.W., Seeley R.J. Seminars in medicine of the Beth Israel Deaconess medical center: Neuroendocrine responses to starvation and weight loss // New Еngl. J. Med. 1997. V. 336. Р. 1803–1811.

39. Semple R.K., Chatterjee V.K., O’Rahilly S. PPAR gamma and human metabolic disease // J. Clin. Invest. 2006. V. 116. No. 3. P. 581–589.

40. Sun Q., Cornelis M.C., Kraft P. et al. Genome-wide association study identifi es polymorphisms in LEPR as determinants of plasma soluble leptin receptor levels // Hum. Mol. Genet. 2010. No. 19 (9). P. 1846–1855.

41. Verkerke H., Naylor C., Zabeau L. et al. Kinetics of leptin binding to the Q223R leptin receptor // PLoS One. 2014. No. 9 (4). Р. 43–48.

42. Wang T.N., Huang M.C., Chang W. et al. G-2548A polymorphism of the leptin gene is correlated with extreme obesity in Taiwanese aborigines // Obesity. 2006. No. 14 (2). P. 183–187.

43. Willard L., Ranjan A., Zhang H. et al. VADAR: a web server for quantitative evaluation of protein structure quality // Nucleic Acids Res. 2003. No. 31 (13). P. 3316–3319.


Рецензия

Просмотров: 707


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)