Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Raise and characterization of a bread wheat hybrid line (Tulaykovskaya 10 × Saratovskaya 29) with chromosome 6Agi2 introgressed from Thinopyrum intermedium

https://doi.org/10.18699/VJ21.080

Abstract

Wheatgrass Thinopyrum intermedium is a source of agronomically valuable traits for common wheat. Partial wheat–wheatgrass amphidiploids and lines with wheatgrass chromosome substitutions are extensively used as intermediates in breeding programs. Line Agis 1 (6Agi2/6D) is present in the cultivar Tulaykovskaya 10 pedigree. Wheatgrass chromosome 6Agi2 carries multiple resistance to fungal diseases in various ecogeographical zones. In  this work, we studied the transfer of chromosome 6Agi2 in hybrid populations Saratovskaya 29×Tulaykovskaya 10 (S29×T10) and Tulaykovskaya 10×Saratovskaya 29 (T10×S29). Chromosome 6Agi2 was identified by PCR with chromosome-specific primers and by genomic in situ hybridization (GISH). According to molecular data, 6Agi2 was transmitted to nearly half of the plants tested in the F2 and F3 generations. A new breeding line 49-14 (2n = 42) with chromosome pair 6Agi2 was isolated and characterized in T10×S29 F5 by GISH. According to the results of our field experiment in 2020, the line had high productivity traits. The grain weights per plant (10.04±0.93 g) and the number of grains per plant (259.36±22.49) did not differ significantly from the parent varieties. The number of grains per spikelet in the main spike was significantly higher than in S29 (p ≤ 0.001) or T10 (p ≤ 0.05). Plants were characterized by the ability to set 3.77±0.1 grains per spikelet, and this trait varied among individuals from 2.93 to 4.62. The grain protein content was 17.91 %, and the gluten content, 40.55 %. According to the screening for fungal disease resistance carried out in the field in 2018 and 2020, chromosome 6Agi2 makes plants retain immunity to the West Siberian population of brown rust and to dominant races of stem rust. It also provides medium resistant and medium susceptible types of response to yellow rust. The possibility of using lines/varieties of bread wheat with wheatgrass chromosomes 6Agi2 in breeding in order to increase protein content in the grain, to confer resistance to leaf diseases on plants and to create multiflowered forms is discussed.

 

About the Authors

Yu. N. Ivanova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



K. K. Rosenfread
Novosibirsk State Agrarian University
Russian Federation

Novosibirsk



A. I. Stasyuk
Kurchatov Genomic Center of ICG SB RAS
Russian Federation

Novosibirsk



E. S. Skolotneva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



O. G. Silkova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Arbuzova V.S., Dobrovolskaya O.B., Martinek P., Chumanova E.V., Efremova T.T. Inheritance of signs of “many-flowered” common wheat and evaluation of productivity of the spike of F2 hybrids. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(3):355-363. DOI 10.18699/VJ16.125. (in Russian)

2. Askhadullin D.F., Askhadullin D.F., Vasilova N.Z., Khusainova I.I., Tazutdinova M.R. A variety in the spring wheat protection system from leafy diseases. Vestnik Kazanskogo GAU = Vestnik of the Kazan State Agrarian University. 2019;3(54):10-14. DOI 10.12737/article_5db8423bb4f997.64890554. (in Russian)

3. Ayala-Navarrete L., Thompson N., Ohm H., Anderson J. Molecular markers show a complex mosaic pattern of wheat-Thinopyrum intermedium translocations carrying resistance to YDV. Theor. Appl. Genet. 2010;121:961-970. DOI 10.1007/s00122-010-1365-y.

4. Bao Y., Wu X., Zhang C., Li X., He F., Qi X., Wang H. Chromosomal constitutions and reactions to powdery mildew and stripe rust of four novel wheat-Thinopyrum intermedium partial amphiploids. J. Genet. Genomics. 2014;41(12):663-666. DOI 10.1016/j.jgg.2014.11.003.

5. Bhusal N., Sarial A.K., Sharma P., Sareen S. Mapping QTLs for grain yield components in wheat under heat stress. PLoS One. 2017; 12(12):e0189594. DOI 10.1371/journal.pone.0189594.

6. Chang Z.-J., Zhang X.-J., Yang Z.-J., Zhan H.-X., Li X., Liu C., Zhang C.-Z. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas. 2010;147(6):304-312. DOI 10.1111/j.1601-5223.2010.02156.x.

7. Cseh A., Yang C., Hubbart-Edwards S., Scholefield D., Ashling S.S., Burridge A.J., Wilkinson P.A., King I.P., King J., Grewal S. Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of Thinopyrum intermedium in a wheat background. Theor. Appl. Genet. 2019; 132:1555-1570. DOI 10.1007/s00122-019-03300-9.

8. Cui F., Ding A., Li J., Zhao C., Wang L., Wang X., Qi X., Li X., Li G., Gao J., Wang H. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica. 2012;186:177-192. DOI 10.1007/s10681-011-0550-7.

9. Danilova T.V., Zhang G., Liu W., Friebe B., Gill B.S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor. Appl. Genet. 2017;130(3):549-556. DOI 10.1007/s00122-016-2834-8.

10. Davoyan R.O., Bebyakina I.V., Davoyan E.R., Zinchenco A.N., Zubanova Y.S., Mikov D.S. Introgression of common wheat lines with genetic material of Agropyron glaucum. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2015;19(1):83-90. DOI 10.18699/VJ15.010. (in Russian)

11. Fedak G., Han F. Characterization of derivatives from wheat-Thinopyrum wide crosses. Cytogenet. Genome Res. 2005;109:360-367. DOI 10.1159/000082420.

12. Feng N., Song G., Guan J., Chen K., Jia M., Huang D., Wu J., Zhang L., Kong X., Geng S., Liu J., Li A., Mao L. Transcriptome profiling of wheat inflorescence development from spikelet initiation to floral patterning identified stage-specific regulatory genes. Plant Physiol. 2017;174(3):1779-1794. DOI 10.1104/pp.17.00310.

13. Filatova E.V., Syukov V.V., Anisimkina N.V. Influence of the T-5 translocation from wheat grass on the protein fractional structure of spring bread wheat. Agrarnyy Vestnik Yugo-Vostoka = Agrarian Herald of the Southeast. 2010;4:15-17. (in Russian)

14. Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59-87.

15. Fu S., Lv Z., Qi B., Guo X., Li J., Liu B., Han F. Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat fusarium head blight. J. Genet. Genomics. 2012; 39:103-110. DOI 10.1016/j.jgg.2011.11.008.

16. Guo Z., Chen D., Alqudah A.M., Röder M.S., Ganal M.W., Schnurbusch T. Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol. 2017;214:257-270. DOI 10.1111/nph.14342.

17. Guo Z., Slafer G.A., Schnurbusch T. Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. J. Exp. Bot. 2016;67:4221-4230. DOI 10.1093/jxb/erw200.

18. Guo Z., Zhao Y., Röder M.S., Reif J.C., Ganal M.W., Chen D., Schnurbusch T. Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Sci. Rep. 2018; 8:14435. DOI 10.1038/s41598-018-31977-3.

19. Han F., Liu B., Fedak G., Liu Z. Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor. Appl. Genet. 2004;109:1070-1076. DOI 10.1007/s00122-004-1720-y.

20. Han H., Bai L., Su J., Zhang J., Song L., Gao A., Yang X., Li X., Liu W., Li L. Genetic rearrangements of six wheat-Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS One. 2014;9(3):e91066. DOI 10.1371/journal.pone.0091066.

21. Hu J., Wang X., Zhang G., Jiang P., Chen W., Hao Y., Ma X., Xu S., Jia J., Kong L., Wang H. QTL mapping for yield-related traits in wheat based on four RIL populations. Theor. Appl. Genet. 2020; 133:917-933. DOI 10.1007/s00122-019-03515-w.

22. Hu L.J., Li G.R., Zeng Z.X., Chang Z.J., Liu C., Zhou J.P., Yang Z.J. Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica. 2011;177: 169-177. DOI 10.1007/s10681-010-0216-x.

23. Hu L., Li G., Zhan H., Liu C., Yang Z. New St-chromosome-specific molecular markers for identifying wheat-Thinopyrum intermedium derivative lines. J. Genet. 2014;93:69-74. DOI 10.1007/s12041-012-0158-2.

24. Ishikawa G., Nakamura T., Ashida T., Saito M., Nasuda S., Endo T.R., Wu J., Matsumoto T. Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor. Appl. Genet. 2009;118:499-514. DOI 10.1007/s00122-008-0916-y.

25. Ivanova Yu.N., Solovey L.A., Loginova D.B., Miroshnikova E.E., Dubovets N.I., Silkova O.G. The creation and characterization of the bread wheat line with a centric translocation T2DL.2RL. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(7):846-855. DOI 10.18699/VJ19.558. (in Russian)

26. Jiang J., Friebe B., Gill B.S. Recent advances in alien gene transfer in wheat. Euphytica. 1993;73:199-212. DOI 10.1007/BF00036700.

27. Koyshybaev M., Shamanin V.P., Morgunov A.I. Wheat Screening for Resistance to Major Diseases: Guidelines. Ankara: FAO-SEK Publ., 2014. (in Russian)

28. Kroupin P., Kuznetsova V., Romanov D., Kocheshkova A., Karlov G., Dang T.X., Khuat T.M.L., Kirov I., Alexandrov O., Polkhovskiy A., Razumova O., Divashuk M. Pipeline for the rapid development of cytogenetic markers using genomic data of related species. Genes. 2019;10(2):113. DOI 10.3390/genes10020113.

29. Krupin P.Yu., Divashuk M.G., Belov V.I., Zhemchuzhina A.I., Kovalenko E.D., Upelniek V.P., Karlov G.I. Investigation of intermediary wheat-Agropyron hybrids on resistance to leaf rust. Sel’skokhozyaistvennaya Biologiya = Agricultural Biology. 2013;48(1): 68-73. DOI 10.15389/agrobiology.2013.1.68eng.

30. Krupin P.Yu., DivashukM.G., KarlovG.I. Gene resources of perennial wild cereals involved in breeding to improve wheat crop (review). Sel’skokhozyaistvennaya Biologiya = Agricultural Biology. 2019; 54(3):409-425. DOI 10.15389/agrobiology.2019.3.409eng.

31. Kuperman F.M. Physiology of the development, growth and organogenesis of wheat. In: Henkel P.A. (Ed.). Wheat Physiology. IV. Physiology of Agricultural Plants. Moscow: Moscow University Publ., 1969;7-193. (in Russian)

32. Leonova I.N. Influence of alien genetic material on the manifestation of agronomically important traits of common wheat (T. aestivum L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(3):321-328. DOI 10.18699/VJ18.367. (in Russian)

33. Leonova I.N. Genome-wide association study of powdery mildew resistance in Russian spring wheat varieties (T. aestivum L.). Russ. J. Genet. 2019;55(11):1360-1374. DOI 10.1134/S1022795419110085.

34. Leonova I.N., Stasyuk A.I., Skolotneva E.S., Salina E.A. Enhancement of leaf rust resistance of Siberian winter wheat varieties by marker-assisted selection. Cereal Res. Commun. 2017;45(4):621- 632. DOI 10.1556/0806.45.2017.048.

35. Li D., Long D., Li T., Wu Y., Wang Y., Zeng J., Xu L., Fan X., Sha L., Zhang H., Zhou Y., Kang H. Cytogenetics and stripe rust resistance of wheat-Thinopyrum elongatum hybrid derivatives. Mol. Cytogenet. 2018;11:16. DOI 10.1186/s13039-018-0366-4.

36. Li G., Wang H., Lang T., Li J., La S., Yang E., Yang Z. New molecular markers and cytogenetic probes enable chromosome identification of wheat-Thinopyrum intermedium introgression lines for improving protein and gluten contents. Planta. 2016;244:865-876. DOI 10.1007/s00425-016-2554-y.

37. Li H., Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J. Genet. Genomics. 2009;36(9):557-565. DOI 10.1016/S1673-8527(08)60147-2.

38. Liu C., Yang Z.J., Li G.R., Feng J., Zhou J.P., Ren Z.L. A discussion on genetic relationship in genome between Thinopyrum and Dasypyrum. Chinese High Tech. Lett. 2007;17:295-300.

39. Ma H., Zhang J., Zhang J., Zhou S., Han H., Liu W., Yang X., Li X., Li L. Development of P genome-specific SNPs and their application in tracing Agropyron cristatum introgressions in common wheat. Crop J. 2019;7(2):151-162. DOI 10.1016/j.cj.2018.07.003.

40. Martinek P., Watanabe N., Peng Z.S. Gene resources of wheat (Triticum aestivum L.) with different arrangement of spikelets in spike. In: 7th International Wheat Conference, Mar del Plata, 2005.

41. Martynov S.P., Dobrotvorskaya T.V., Krupnov V.A. Genealogical analysis of the use of two wheatgrass (Agropyron) species in common wheat (Triticum aestivum L.) breeding for disease resistance. Russ. J. Genet. 2016;52(2):154-163. DOI 10.1134/S1022795416020071.

42. Philipp N., Weichert H., Bohra U., Weschke W., Schulthess A.W., Weber H. Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. PLoS One. 2018;13(10):e0205452. DOI 10.1371/journal.pone.0205452.

43. Piskarev V.V., Boyko N.I., Kondratieva I.V. Sources of agronomically important traits for breeding of soft spring wheat (Triticum aestivum L.) in the forest steppe of Novosibirsk region. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(3):277-285. DOI 10.18699/VJ16.166. (in Russian)

44. Plakhotnik V.V., Zeleneva Yu.V., Sudnikova V.P. Sources and high performance donors for spring wheat selection to increase resistance to stress factors of environment. Voprosy Sovremennoj Nauki i Praktiki. Universitet imeni V.I. Vernadskogo = Problems of Contemporary Science and Practice. Vernadsky University. 2014; 1(50):109-113. (in Russian)

45. Roelfs A.P., Singh R.P., Saari E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico: CIMMYT, 1992.

46. Sakuma S., Golan G., Guo Z., Ogawa T., Tagiri A., Sugimoto K., Bernhardt N., Brassac J., Mascher M., Hensel G., Ohnishi S., Jinno H., Yamashita Y., Ayalon I., Peleg Z., Schnurbush T., Komatsuda T. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc. Natl. Acad. Sci. USA. 2019;116(11): 5182-5187. DOI 10.1073/pnas.1815465116.

47. Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P.Yu., StasyukA.I., Leonova I.N., Shishkina A.A., Divashuk M.G., Starikova E.V., Khuat T.M.L., Syukov V.V., Karlov G.I. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica. 2015;204:91- 101. DOI 10.1007/s10681-014-1344-5.

48. Salina E.A., Leonova I.N., Shcherban A.B., Stasyuk A.I. Patent RU 2598275 C1. Method of creating lines of winter soft wheat with complex resistance to brown and stem rust and powdery mildew (Institute of Cytology and Genetics, SB RAS). Date of filing: 29.07.2015. Date of publication: 20.09.2016. Bull. No. 26. (in Russian)

49. Sibikeev S.N., Badaeva E.D., Gultyaeva E.I., Druzhin A.E., Shishkina A.A., Dragovich A.Yu., Kroupin P.Yu., Karlov G.I., Thi Mai Khuat, Divashuk M.G. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi 2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ. J. Genet. 2017;53(3):314-324. DOI 10.1134/S1022795417030115.

50. Sinigovets M.E. Transferring wheatgrass rust resistance to wheat by adding and replacing chromosomes. Genetika = Genetics (Moscow). 1976;12(9):13-20. (in Russian)

51. Sinigovets M.E. Cytogenetic fundamentals of using wheatgrass in wheat improvement. Dr. Biol. Sci. Diss. Bol’shie Vyazemy, 1988. OD 71 89-3/185. Available at: https://search.rsl.ru/ru/record/01008509447. (in Russian)

52. Skolotneva E.S., Kelbin V.N., Morgunov A.I., Boiko N.I., Shamanin V.P., Salina Е.А. Races composition of the Novosibirsk population of Puccinia graminis f. sp. tritici. Mikologiya i Fitopatologiya = Mycology and Phytopathology. 2020;54(1):49-58. DOI 10.31857/S0026364820010092. (in Russian)

53. Sreenivasulu N., Schnurbusch T. A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 2012;17(2):91-101. DOI 10.1016/j.tplants.2011.11.003.

54. Stasyuk А.I., Leonova I.N., Salina Е.А. Variability of agronomically important traits in spring wheat hybrids obtained by marker-assisted selection from crosses of winter wheat with spring wheat donors of resistance genes. Sel’skokhozyaistvennaya Biologiya = Agricultural Biology. 2017;52(3):526-534. DOI 10.15389/agrobiology.2017.3.526eng.

55. State Standard 9353-2016. Wheat: Specifications. 2018. Available at: http://docs.cntd.ru/document/1200139414 (in Russian)

56. State Standard 26574-2017. Wheat Bakery Flour: Specifications (amended). 2019. Available at: http://docs.cntd.ru/document/1200157423 (in Russian)

57. Sukumaran S., Lopes M., Dreisigacker S., Reynolds M. Genetic analysis of multi environmental spring wheat trials identifies genomic regions for locus-specific tradeoffs for grain weight and grain number. Theor. Appl. Genet. 2018;131:985-998. DOI 10.1007/s00122-017-3037-7.

58. Syukov V.V., Shabolkina E.N., Shevchenko S.N., Vyushkov A.A. Spring soft wheat Tulaykovskaya 110. Molodoy Uchenyy = Young Scientist. 2016;27.3:57-60. (in Russian)

59. Tsitsin N.V. Remote Hybridization of Plants. Moscow: Selkhozgiz Publ., 1954;3-64. (in Russian)

60. Ugarte C.C., Trupkin S.A., Ghiglione H., Slafer G., Casal J.J. Low red/far-red ratios delay spike and stem growth in wheat. J. Exp. Bot. 2010;61(11):3151-3162. DOI 10.1093/jxb/erq140.

61. Upelniek V.P., Belov V.I., Ivanova L.P., Dolgova S.P., Demidov A.S. Heritage of academician N.V. Tsitsin: state-of-the-art and potential of the collection of intermediate wheat × couch-grass hybrids. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(3):667-674. (in Russian)

62. Volkova L.V., Bebyakin V.M., Lyskova I.V. Plasticity and stability of spring wheat varieties and breeding forms according to grain productivity and quality. Russ. Agricult. Sci. 2010;36(1):1-4. DOI 10.3103/S1068367410010015.

63. Wang M.J., Zhang Y., Lin Z.S., Ye X.G., Yuan Y.P., Ma W., Xin Z.Y. Development of EST-PCR markers for Thinopyrum intermedium chromosome 2Ai#2 and their application in characterization of novel wheat-grass recombinants. Theor. Appl. Genet. 2010;121: 1369-1380. DOI 10.1007/s00122-010-1394-6.

64. Wang R.R.C. Agropyron and Psathyrostachys. In: Kole C. (Ed.). Wild Crop Relatives: Genomic Breeding Resources. Springer, Berlin, Heidelberg, 2011;77-108. DOI 10.1007/978-3-642-14228-4_2.

65. Wolde G.M., Mascher M., Schnurbusch T. Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight. Mol. Genet. Genomics. 2019; 294:457-468. DOI 10.1007/s00438-018-1523-5.

66. Wu J., Yang X., Wang H., Li H., Li L., Li X., Liu W. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor. Appl. Genet. 2006;114:13-20. DOI 10.1007/s00122-006-0405-0.

67. Zeleneva Yu.V. Substantiation of the genetic protection of wheat from diseases in the Central Chernozem Belt. Dr. Biol. Sci. Diss. St. Petesburg; Pushkin, 2019. Available at: https://rusneb.ru/catalog/000200_000018_RU_NLR_BIBL_A_012131792/ (in Russian)

68. Zeng J., Cao W., Fedak G., Sun S., Mccallum B., Fetch T., Xue A., Zhou Y. Molecular cytological characterization of two novel durum – Thinopyrum intermedium partial amphiploids with resistance to leaf rust, stem rust and Fusarium head blight. Hereditas. 2013;150(1):10-16. DOI 10.1111/j.1601-5223.2012.02262.x.

69. Zeng Z.-X., Yang Z.-J., Hu L.-J., Liu C., Li G.R., Ren Z.-L. Development of St genome specific ISSR marker. Acta Bot. Boreal. Occident. Sin. 2008;28(8):1533-1540.

70. Zhang P., Li W., Fellers J., Friebe B., Gill B.S. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma. 2004;112:288-299. DOI 10.1007/s00412-004-0273-9.

71. Zhang Z.Y., Xin Z.Y., Larkin P.J. Molecular characterization of a Thinopyrum intermedium group 2 chromosome (2Ai-2) conferring resistance to barley yellow dwarf virus. Genome. 2001;44(6): 1129-1135. DOI 10.1139/g01-083.

72. Zheng Q., Lv Z., Niu Z., Li B., Li H., Xu S.S., Han F., Li Z. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids. J. Genet. Genomics. 2014;41(11):591-599. DOI 10.1016/j.jgg.2014.06.003.


Review

Views: 880


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)