Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Polymorphism of CLE gene sequences in potato

https://doi.org/10.18699/VJ21.085

Abstract

CLE (CLV3/ESR) is one of the most important groups of peptide phytohormones: its members regulate the development of various plant organs and tissues, as well as interaction with some parasites and symbionts and response to environmental factors. In this regard, the identification and study of the CLE genes encoding the peptides of this group in cultivated plants are of great practical interest. Relatively little is known about the functions of CLE peptides in potato, since the CLE genes of the potato Solanum phureja Juz. et Buk. were characterized only in 2021. At the same time, potato includes plenty of tuberous species of the genus Solanum L., both wild and cultivated, and the diversity of its forms may depend on differences in the sequences of CLE genes. In this work, we performed a search for and analysis of the CLE gene sequences in three wild potato species (S. bukasovii Juz., S. verrucosum Schltdl., S. commersonii Dunal) and four cultivated species (S. chaucha Juz. et Buk., S. curtilobum Juz. et Buk., S. juzepczukii Juz. et Buk., S. ajanhuiri Juz. et Buk.). In total, we identified 332 CLE genes in the analyzed potato species: from 40 to 43 genes of this family for each potato species. All potato species taken for analysis had homologues of previously identified S. phureja CLE genes; at the same time, the CLE42 gene, which is absent from the S. phureja genome, is present in all other analyzed potato species. Polymorphism of CLE proteins of S. commersonii is significantly higher than that of other analyzed potato species, due to the fact that S. commersonii grows in places outside the growing areas of other potato species and this potato is probably not one of the ancestors of cultivated potato. We also found examples of polymorphism of domains of CLE proteins that carried different functions. Further study of potato CLE proteins will reveal their role in development, including regulation of productivity in this important agricultural crop.

About the Authors

M. S. Gancheva
Saint Petersburg State University
Russian Federation

St. Petersburg



M. R. Losev
Saint Petersburg State University
Russian Federation

St. Petersburg



A. A. Gurina
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg



L. O. Poliushkevich
Saint Petersburg State University
Russian Federation

St. Petersburg



I. E. Dodueva
Saint Petersburg State University
Russian Federation

St. Petersburg



L. A. Lutova
Saint Petersburg State University
Russian Federation

St. Petersburg



References

1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215(3):403-410. DOI 10.1016/S0022-2836(05)80360-2.

2. Clark S.E., Running M.P., Meyerowitz E.M. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development. 1995;121(7):2057- 2067. DOI 10.1242/dev.121.7.2057.

3. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-791. DOI 10.1111/j.1558-5646.1985.tb00420.x.

4. Fletcher J.C. Recent advances in Arabidopsis CLE peptide signaling. Trends Plant Sci. 2020;25(10):1005-1016. DOI 10.1016/j.tplants.2020.04.014.

5. Gancheva M., Dodueva I., Lebedeva M., Lutova L. CLAVATA3/ EMBRYO SURROUNDING REGION (CLE ) gene family in potato (Solanum tuberosum L.): identification and expression analysis. Agronomy. 2021;11(5):984. DOI 10.3390/agronomy11050984.

6. Gancheva M.S., Malovichko Y.V., Poliushkevich L.O., Dodueva I.E., Lutova L.A. Plant peptide hormones. Russ. J. Plant Physiol. 2019; 66:171-189. DOI 10.1134/S1021443719010072.

7. Goad D.M., Zhu C., Kellogg E.A. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. New Phytol. 2017;216(2):605-616. DOI 10.1111/nph.14348.

8. Hawkes J.G. The Potato: Evolution, Biodiversity and Genetic Resources. Belhaven Press., 1990.

9. Hawkes J.G., Hjerting J.P. The Potatoes of Argentina, Brazil, Paraguay and Uruguay. A biosystematic study. Oxford, 1969.

10. Huamán Z., Ross R.W. Updated listing of potato species names, abbreviations and taxonomic status. Am. J. Potato Res. 1985;62(11):629- 641. DOI 10.1007/BF02854438.

11. Jun J., Fiume E., Roeder A.H., Meng L., Sharma V.K., Osmont K.S., Baker C., Ha C.M., Meyerowitz E.M., Feldman L.J., Fletcher J.C. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. Plant Physiol. 2010;154(4):1721-1736. DOI 10.1104/pp.110.163683.

12. Juzepczuk S.W., Bukasov S.M. A contribution to the question of the origin of the potato. In: Proceedings of the USSR Congress of Genetics, Plant and Animal Breeding. Leningrad, 1929;3:593-611. (in Russian)

13. Kinoshita A., Nakamura Y., Sasaki E., Kyozuka J., Fukuda H., Sawa S. Gain-of-function phenotypes of chemically synthetic CLAVATA3/ ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol. 2007;48(12):1821-1825. DOI 10.1093/pcp/pcm154.

14. Kondo T., Sawa S., Kinoshita A., Mizuno S., Kakimoto T., Fukuda H., Sakagami Y. A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science. 2006;313(5788):845-848. DOI 10.1126/science.1128439.

15. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016;33(7):1870-1874. DOI 10.1093/molbev/msw054.

16. Lekhnovich V.S. Cultivated Potato Species. In: Flora of Cultivated Plants of the USSR. Vol. 9. Potato. Leningrad, 1971;41-304. (in Russian)

17. Li Y., Colleoni C., Zhang J., Liang Q., Hu Y., Ruess H., Simon R., Liu Y., Liu H., Yu G., Schmitt E., Ponitzki C., Liu G., Huang H., Zhan F., Chen L., Huang Y., Spooner D., Huang B. Genomic analyses yield markers for identifying agronomically important genes in potato. Mol. Plant. 2018;11(3):473-484. DOI 10.1016/j.molp.2018.01.009.

18. Meng L., Ruth K.C., Fletcher J.C., Feldman L. The roles of different CLE domains in Arabidopsis CLE polypeptide activity and functional specificity. Mol. Plant. 2010;3(4):760-772. DOI 10.1093/mp/ssq021.

19. Ni J., Guo Y., Jin H., Hartsell J., Clark S.E. Characterization of a CLE processing activity. Plant Mol. Biol. 2011;75(1-2):67-75. DOI 10.1007/s11103-010-9708-2.

20. Oelkers K., Goffard N., Weiller G.F., Gresshoff P.M., Mathesius U., Frickey T. Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol. 2008;8:1. DOI 10.1186/1471-2229-8-1.

21. Opsahl‐Ferstad H.‐G., Deunff E.L., Dumas C., Rogowsk P.M. ZmEsr, a novel endosperm‐specific gene expressed in a restricted region around the maize embryo. Plant J. 1997;12:235-246. DOI 10.1046/j.1365-313X.1997.12010235.x.

22. Poliushkevich L.O., Gancheva M.S., Dodueva I.E., Lutova L.A. Receptors of CLE peptides in plants. Russ. J. Plant Physiol. 2020;67(1): 1-16. DOI 10.1134/S1021443720010288.

23. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4(4):406-425. DOI 10.1093/oxfordjournals.molbev.a040454.

24. Sharma V.K., Ramirez J., Fletcher J.C. The Arabidopsis CLV3-like (CLE ) genes are expressed in diverse tissues and encode secreted proteins. Plant Mol. Biol. 2003;51(3):415-425. DOI 10.1023/a:1022038932376.

25. Spooner D.M., Ghislain M., Simon R., Jansky S.H., Gavrilenko T. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot. Rev. 2014;80(4):283-383. DOI 10.1007/s12229-014-9146-y.

26. Strabala T.J., O’Donnell P.J., Smit A.M., Ampomah-Dwamena C., Martin E.J., Netzler N., Nieuwenhuizen N.J., Quinn B.D., Foote H.C., Hudson K.R. Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. Plant Physiol. 2006;140(4):1331-1344. DOI 10.1104/pp.105.075515.

27. Strabala T.J., Phillips L., West M., Stanbra L. Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYO-SURROUNDING REGION (CLE ) and the CLE-LIKE signal peptide genes in the Pinophyta. BMC Plant Biol. 2014;14:47. DOI 10.1186/1471-2229-14-47.

28. Takahashi F., Suzuki T., Osakabe Y., Betsuyaku S., Kondo Y., Dohmae N., Fukuda H., Yamaguchi-Shinozaki K., Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature. 2018;556(7700):235-238. DOI 10.1038/s41586-018-0009-2.

29. Tvorogova V.E., Krasnoperova E.Y., Potsenkovskaia E.A., Kudriashov A.A., Dodueva I.E., Lutova L.A. What does the WOX say? Review of regulators, targets, partners. Mol. Biol. 2021. DOI 10.1134/S002689332102031X.

30. Yaginuma H., Hirakawa Y., Kondo Y., Ohashi-Ito K., Fukuda H. A novel function of TDIF-related peptides: promotion of axillary bud formation. Plant Cell Physiol. 2011;52(8):1354-1364. DOI 10.1093/pcp/pcr081.

31. Yamaguchi Y.L., Ishida T., Sawa S. CLE peptides and their signaling pathways in plant development. J. Exp. Bot. 2016;67(16):4813- 4826. DOI 10.1093/jxb/erw208.

32. Zhang Y., Yang S., Song Y., Wang J. Genome-wide characterization, expression and functional analysis of CLV3/ESR gene family in tomato. BMC Genom. 2014;15(1):827. DOI 10.1186/1471-2164-15-827.


Review

Views: 747


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)