Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The subcompartmented oxphosomic model of the phosphorylating system organization in mitochondria

https://doi.org/10.18699/VJ21.089

Abstract

The oxidative phosphorylation (OXPHOS) system of mitochondria supports all the vitally important energyconsuming processes in eukaryotic cells, providing them with energy in the form of ATP. OXPHOS enzymes (complexes I–V) are located in the inner mitochondrial membrane, mainly in the cristae subcompartment. At present, there is a large body of data evidencing that the respiratory complexes I, III2 and IV under in vivo conditions can physically interact with each other in diverse stoichiometry, thereby forming supercomplexes. Despite active accumulation of knowledge about the structure of the main supercomplexes of the OXPHOS system, its physical and functional organization in vivo remains unclear. Contemporary models of the OXPHOS system’s organization in the inner membrane of mitochondria are contradictory and presume the existence of either highly organized respiratory strings, or, by contrast, a set of randomly dispersed respiratory supercomplexes and complexes. Furthermore, it is assumed that ATP-synthase (complex V) does not form associations with respiratory enzymes and operates autonomously. Our latest data obtained on mitochondria of etiolated shoots of pea evidence the possibility of physical association between the respiratory supercomplexes and dimeric ATP-synthase. These data have allowed us to reconsider the contemporary concept of the phosphorylation system organization and propose a new subcompartmented oxphosomic model. According to this model, a substantial number of the OXPHOS complexes form oxphosomes, which in a definite stoichiometry include complexes I–V and are located predominantly in the cristae subcompartment of mitochondria in the form of highly organized strings or patches. These suprastructures represent “mini-factories” for ATP production. It is assumed that such an organization (1) contributes to increasing the efficiency of the OXPHOS system operation, (2) involves new levels of activity regulation, and (3) may determine the inner membrane morphology to some extent. The review discusses the proposed model in detail. For a better understanding of the matter, the history of development of concepts concerning the OXPHOS organization with the emphasis on recent contemporary models is briefly considered. The principal experimental data accumulated over the past 40 years, which confirm the validity of the oxphosomic hypothesis, are also provided.

About the Author

I. V. Ukolova
Siberian Institute of Plant Physiology and Biochemistry of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Irkutsk



References

1. Acín-Pérez R., Enríquez J.A. The function of the respiratory supercomplexes: the plasticity model. Biochim. Biophys. Acta. 2014;1837(4): 444-450. DOI 10.1016/j.bbabio.2013.12.009.

2. Acín-Pérez R., Fernández-Silva P., Peleato M.L., Pérez-Martos A., Enriquez J.A. Respiratory active mitochondrial supercomplexes. Mol. Cell. 2008;32(4):529-539. DOI 10.1016/j.molcel.2008.10.021.

3. Allen R.D., Schroeder C.C., Fok A.K. An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J. Cell Biol. 1989;108(6):2233-2240. DOI 10.1083/jcb.108.6.2233.

4. Antonenko Y.N., Kovbasnjuk O.N., Yaguzhinsky L.S. Evidence in favor of the existence of a kinetic barrier for proton transfer from a surface of bilayer phospholipid membrane to bulk water. Biochim. Biophys. Acta. 1993;1150(1):45-50.

5. Boyle G.M., Roucou X., Nagley P., Devenish R.J., Prescott M. Identification of subunit g of yeast mitochondrial F1F0-ATP synthase, a protein required for maximal activity of cytochrome c oxidase. Eur. J. Biochem. 1999;262(2):315-323. DOI 10.1046/j.1432-1327.1999.00345.x.

6. Bultema J.B., Braun H.P., Boekema E.J., Kouril R. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim. Biophys. Acta. 2009;1787(1):60-67. DOI 10.1016/j.bbabio.2008.10.010.

7. Chaban Y., Boekema E.J., Dudkina N.V. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim. Biophys. Acta. 2014;1837(4):418-426. DOI 10.1016/j.bbabio.2013.10.004.

8. Chance B., Williams G.R. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Subj. Biochem. 1956;17:65-134. DOI 10.1002/9780470122624.ch2.

9. Dubinin J., Braun H.P., Schmitz U., Colditz F. The mitochondrial proteome of the model legume Medicago truncatula. Biochim. Biophys. Acta. 2011;1814(12):1658-1668. DOI 10.1016/j.bbapap.2011.08.008.

10. Enríquez J.A. Supramolecular organization of respiratory complexes. Annu. Rev. Physiol. 2016;78:533-561. DOI 10.1146/annurev-physiol021115-105031.

11. Eremeev S.A., Yaguzhinsky L.S. On local coupling of electron transport and ATP-synthesis system in mitochondria. Theory and experiment. Biochemistry (Moscow). 2015;80(5):576-581. DOI 10.1134/S0006297915050089.

12. Eubel H., Jänsch L., Braun H.P. New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol. 2003;133(1):274-286. DOI 10.1104/pp.103.024620.

13. Gilkerson R.W., Selker J.M., Capaldi R.A. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 2003;546(2-3):355-358. DOI 10.1016/s0014-5793(03)00633-1.

14. Guigas G., Weiss M. Effects of protein crowding on membrane systems. Biochim. Biophys. Acta. 2016;1858(10):2441-2450. DOI 10.1016/j.bbamem.2015.12.021.

15. Hackenbrock C.R., Chazotte B., Gupte S.S. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J. Bioenerg. Biomembr. 1986;18(5):331- 368. DOI 10.1007/BF00743010.

16. Keilin D. Cytochrome and intracellular oxidase. Proc. R. Soc. Lond. B. 1930;106(746):418-444. Available at: http://www.jstor.org/stable/81448.

17. Keilin D., Hartree E. Cytochrome and cytochrome oxidase. Proc. R. Soc. B. 1939;127(847):167-191. DOI 10.1098/rspb.1939.0016.

18. Keilin D., Hartree E.F. Activity of the succinic dehydrogenase-cytochrome system in different tissue preparations. Biochem. J. 1949; 44(2):205-218. DOI 10.1042/bj0440205.

19. Krasinskaya I.P., Marshansky V.N., Dragunova S.F., Yaguzhinsky L.S. Relationships of respiratory chain and ATP-synthetase in energized mitochondria. FEBS Lett. 1984;167(1):176-180. DOI 10.1016/0014-5793(84)80856-x.

20. Krause F., Reifschneider N.H., Vocke D., Seelert H., Rexroth S., Dencher N.A. “Respirasome”-like supercomplexes in green leaf mitochondria of spinach. J. Biol. Chem. 2004;279(46):48369-48375. DOI 10.1074/jbc.M406085200.

21. Kühlbrandt W. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 2019;88:515-549. DOI 10.1146/annurevbiochem-013118-110903.

22. Lehninger A. Respiratory-energy transformation. Rev. Mod. Phys. 1959;31:136-146. DOI 10.1103/RevModPhys.31.136.

23. Lenaz G., Genova M.L. Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation. Adv. Exp. Med. Biol. 2012;748: 107-144. DOI 10.1007/978-1-4614-3573-0_5.

24. Luzikov V.N. Principles of control over formation of structures responsible for respiratory functions of mitochondria. Biochemistry (Moscow). 2009;74(13):1443-1456. DOI 10.1134/s0006297909130021.

25. Miranda-Astudillo H., Colina-Tenorio L., Jiménez-Suárez A., Vázquez-Acevedo M., Salin B., Giraud M.F., Remacle C., Cardol P., González-Halphen D. Oxidative phosphorylation supercomplexes and respirasome reconstitution of the colorless alga Polytomella sp. Biochim. Biophys. Acta Bioenerg. 2018;1859(6):434-444. DOI 10.1016/j.bbabio.2018.03.004.

26. Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191: 144-148. DOI 10.1038/191144a0.

27. Motovilov K.A., Yurkov V.I., Volkov E.M., Yaguzhinsky L.S. Properties and new methods of non-equilibrium membrane bound proton fraction research under conditions of proton pump activation. Biochem. (Moscow) Suppl. Ser. A: Membr. Cell Biol. 2009;3(4):478- 487. DOI 10.1134/S1990747809040163.

28. Nübel E., Wittig I., Kerscher S., Brandt U., Schägger H. Two-dimensional native electrophoretic analysis of respiratory supercomplexes from Yarrowia lipolytica. Proteomics. 2009;9(9):2408-2418. DOI 10.1002/pmic.200800632.

29. Peters K., Nießen M., Peterhänsel C., Späth B., Hölzle A., Binder S., Marchfelder A., Braun H.-P. Complex I–complex II ratio strongly differs in various organs of Arabidopsis thaliana. Plant Mol. Biol. 2012;79(3):273-284. DOI 10.1007/s11103-012-9911-4.

30. Qiu Z.H., Yu L., Yu C.A. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial cytochrome c oxidase and adenosine triphosphate synthase complex. Biochemistry. 1992;31(12):3297-3302. DOI 10.1021/bi00127a036.

31. Rich P.R. A generalised model for the equilibration of quinone pools with their biological donors and acceptors in membrane-bound electron transfer chains. FEBS Lett. 1981;130(2):173-178. DOI 10.1016/0014-5793(81)81113-1.

32. Saddar S., Dienhart M.K., Stuart R.A. The F1F0-ATP synthase complex influences the assembly state of the cytochrome bc1-cytochrome oxidase supercomplex and its association with the TIM23 machinery. J. Biol. Chem. 2008;283(11):6677-6686. DOI 10.1074/jbc.M708440200.

33. Schägger H. Respiratory chain supercomplexes of mitochondria and bacteria. Biochim. Biophys. Acta. 2002;1555(1-3):154-159. DOI 10.1016/s0005-2728(02)00271-2.

34. Schägger H., Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19(8):1777- 1783. DOI 10.1093/emboj/19.8.1777.

35. Schlame M. Protein crowding in the inner mitochondrial membrane. Biochim. Biophys. Acta Bioenerg. 2021;1862(1):148305. DOI 10.1016/j.bbabio.2020.148305.

36. Skulachev V.P. The localized ∆μ/H+ problem. The possible role of the local electric field in ATP synthesis. FEBS Lett. 1982;146(1):1-4. DOI 10.1016/0014-5793(82)80692-3.

37. Solodovnikova I.M., Iurkov V.L., Ton’shin A.A., Iaguzhinskiĭ L.S. Local coupling of respiration processes and phosphorylation in rat liver mitochondria. Biofizika = Biophysics. 2004;49(1):47-56. (in Russian)

38. Strecker V., Wumaier Z., Wittig I., Schägger H. Large pore gels to separate mega protein complexes larger than 10 MDa by blue native electrophoresis: isolation of putative respiratory strings or patches. Proteomics. 2010;10(18):3379-3387. DOI 10.1002/pmic.201000343.

39. Tu S.I., Okazaki H., Ramirez F., Lam E., Marecek J.F. Mutual regulation between mitochondrial ATPase and respiratory chain activities. Arch. Biochem. Biophys. 1981;210(1):124-131. DOI 10.1016/0003-9861(81)90172-7.

40. Ukolova I.V., Kondakova M.A., Kondratov I.G., Sidorov A.V., Borovskii G.B., Voinikov V.K. New insights into the organisation of the oxidative phosphorylation system in the example of pea shoot mitochondria. Biochim. Biophys. Acta Bioenerg. 2020;1861(11):148264. DOI 10.1016/j.bbabio.2020.148264.

41. Vogel F., Bornhövd C., Neupert W., Reichert A.S. Dynamic subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 2006;175(2):237-247. DOI 10.1083/jcb.200605138.

42. Vonck J. Supramolecular organization of the respiratory chain. In: Sazanov L. (Ed.). A Structural Perspective on Respiratory Complex I. Dordrecht: Springer, 2012;247-277. DOI 10.1007/978-94-007-4138-6_12.

43. Williams R.J. Possible functions of chains of catalysts. J. Theor. Biol. 1961;1:1-17. DOI 10.1016/0022-5193(61)90023-6.

44. Wittig I., Schägger H. Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim. Biophys. Acta. 2009;1787(6):672-680. DOI 10.1016/j.bbabio.2008.12.016.

45. Yaguzhinsky L.S., Yurkov V.I., Krasinskaya I.P. On the localized coupling of respiration and phosphorylation in mitochondria. Biochim. Biophys. Acta. 2006;1757(5-6):408-414. DOI 10.1016/j.bbabio.2006.04.001.


Review

Views: 613


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)