FEATURE SELECTION IN THE TASK OF MEDICAL DIAGNOSTICS ON MICROARRAY DATA
Abstract
In tasks of modern biology, the numbers of attributes often exceed the numbers of objects by orders of magnitude. For the solution of such tasks, a Data Mining method based on using a new measure of similarity between objects in the form of the Function of Rival Similarity (FRiS) is offered. On this basis, methods of quantitative estimation of compactness of patterns, construction of decision rules, and feature selection are developed. All these techniques are implemented in the FRiS-GRAD algorithm. The high efficiency of the algorithm is illustrated by results of solving the task of disease recognition on a microarray dataset.
About the Authors
N. G. ZagoruikoRussian Federation
O. A. Kutnenko
Russian Federation
I. A. Borisova
Russian Federation
V. V. Dyubanov
Russian Federation
D. A. Levanov
Russian Federation
O. A. Zyranov
Russian Federation
References
1. Загоруйко Н.Г. Когнитивный анализ данных. Новосибирск: Академическое издательство ГЕО, 2013. 186 с.
2. Загоруйко Н.Г., Борисова И.А., Дюбанов В.В., Кутненко О.А. Количественная мера компактности и сходства в конкурентном пространстве // Сибирский журнал индустриальной математики. Новосибирск, 2010. Т. 13. № 1 (41). С. 59–71.
3. Guyon I., Weston J., Barnhill S., Vapnik V. Gene Selection for Cancer Classifi cation using Support Vector Machines // Machine Learnin. 2002. V. 46 (1–3). P. 389–422.
4. Jeffery I., Higgins D., Culhane A. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data // BMC Bioinformatics. 2006. V. 7. P. 359.
5. Vapnik V.N. Statistical Learning Theory. Wiley-Interscience, 1998.
6. Zagoruiko N.G., Borisova I.A., Dyubanov V.V., Kutnenko O.A. Methods of Recognition Based on the Function of Rival Similarity // Pattern Recognition Image Analisys. 2008. V. 18. No. 1. P. 1–6.