Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Taxonomic composition and biodiversity of the gut microbiome from patients with irritable bowel syndrome, ulcerative colitis, and asthma

https://doi.org/10.18699/VJ21.100

Abstract

To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time.

About the Authors

A. Y. Tikunov
Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk, Russia



A. N. Shvalov
State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor
Russian Federation

Koltsovo, Novosibirsk region, Russia



V. V. Morozov
Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk, Russia



I. V. Babkin
Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk, Russia



G. V. Seledtsova
Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk, Russia



I. O. Voloshina
Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk, Russia



I. P. Ivanova
Institute of Fundamental and Clinical Immunology
Russian Federation

Novosibirsk, Russia



A. V. Bardasheva
Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk, Russia



V. V. Morozova
Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk, Russia



V. V. Vlasov
Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk, Russia



N. V. Tikunova
Institute of Сhemical Biology аnd Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk, Russia



References

1. Tikunov A.Y., Morozov V.V., Shvalov A.N., Bardasheva A.V., Shrayner E.V., Maksimova O.A., Voloshina I.O., Morozova V.V., Vlasov V.V., Tikunova N.V. Fecal microbiome change in patients with ulcerative colitis after fecal microbiota transplantation. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(2):168-175. DOI 10.18699/VJ20.610. (in Russian)

2. Angelakis E., Merhej V., Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modifcation. Lancet Infect. Dis. 2013;13(10):889-899. DOI 10.1016/S1473-3099(13)70179-8.

3. Arrieta M.C., Stiemsma L.T., Dimitriu P.A., Thorson L., Russell S., Yurist-Doutsch S., Kuzeljevic B., Gold M.J., Britton H.M., Lefebvre D.L., Subbarao P., Mandhane P., Becker A., McNagny K.M., Sears M.R., Kollmann T. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 2015; 7(307):307ra152. DOI 10.1126/scitranslmed.aab2271.

4. Bajer L., Kverka M., Kostovcik M., Macinga P., Dvorak J., Stehlikova Z., Brezina J., Wohl P., Spicak J., Drastich P. Distinct gut microbiota profles in patients with primary sclerosing cholangitis and ulcerative colitis. World J. Gastroenterol. 2017;23(25):4548-4558. DOI 10.3748/wjg.v23.i25.4548.

5. Baker-Austin C., Oliver J.D., Alam M., Ali A., Waldor M.K., Qadri F., Martinez-Urtaza J. Vibrio spp. infections. Nat. Rev. Dis. Primers. 2018;4(1):8. DOI 10.1038/s41572-018-0005-8.

6. Bennet S.M., Ohman L., Simren M. Gut microbiota as potential orchestrators of irritable bowel syndrome. Gut Liver. 2015;9(3):318-331. DOI 10.5009/gnl14344.

7. Belizário J.E., Faintuch J., Garay-Malpartida M. Gut microbiome dysbiosis and immunometabolism: new frontiers for treatment of metabolic diseases. Mediators Inf lamm. 2018;2018:1-12. DOI 10.1155/2018/2037838.

8. Chakravorty S., Helb D., Burday M., Connell N., Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods. 2007;69(2):330-339.

9. Chen Y.J., Wu H., Wu S.D., Lu N., Wang Y.T., Liu H.N., Dong L., Liu T.T., Shen X.Z. Parasutterella, in association with irritable bowel syndrome and intestinal chronic inflammation. J. Gastroenterol. Hepatol. 2018;33(11):1844-1852. DOI 10.1111/jgh.14281.

10. Cheng Y.W., Fischer M. The present status of fecal microbiota transplantation and its value in the elderly. Curr. Treat. Options Gastroenterol. 2017;15(3):349-362. DOI 10.1007/s11938-017-0143-1.

11. Chiu C.Y., Cheng M.L., Chiang M.H., Kuo Y.L., Tsai M.H., Chiu C.C., Lin G. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma. Pediatr. Allergy Immunol. 2019;30(7):689-697. DOI 10.1111/pai.13096.

12. Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 2016;14(1):20-32. DOI 10.1038/nrmicro3552.

13. Dubinsky M., Braun J. Diagnostic and prognostic microbial biomarkers in inflammatory bowel diseases. Gastroenterology. 2015;149:1265-1274e3. DOI 10.1053/j.gastro.2015.08.006.

14. Flint H.J., Scott K.P., Duncan S.H., Louis P., Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012; 3(4):289-306. DOI 10.4161/gmic.19897.

15. Fujimura K.E., Slusher N.A., Cabana M.D., Lynch S.V. Role of the gut microbiota in defning human health. Expert Rev. Anti. Infect. Ther. 2010;8(4):435-454. DOI 10.1586/eri.10.14.

16. Gradel K.O., Nielsen H.L., Schønheyder H.C., Ejlertsen T., Kristensen B., Nielsen H. Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterology. 2009;137(2):495-501. DOI 10.1053/j.gastro.2009.04.001.

17. Hufnagl K., Pali-Schöll I., Roth-Walter F., Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol. 2020;42(1):75-93. DOI 10.1007/s00281-019-00775-y.

18. Jalanka-Tuovinen J., Salojärvi J., Salonen A., Immonen O., Garsed K., Kelly F.M., Zaitoun A., Palva A., Spiller R.C., de Vos W.M. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut. 2014;63(11):1737-1745. DOI 10.1136/gutjnl-2013-305994.

19. Jeffery I.B., O’Toole P.W., Öhman L., Claesson M.J., Deane J., Quigley E.M., Simrén M. An irritable bowel syndrome subtype defned by species-specifc alterations in faecal microbiota. Gut. 2012; 61(7):997-1006. DOI 10.1136/gutjnl-2011-301501.

20. Kovaleva J., Degener J.E., van der Mei H.C. Methylobacterium and its role in health care-associated infection. J. Clin. Microbiol. 2014; 52(5):1317-1321. DOI 10.1128/JCM.03561-13.

21. Lai C.C., Cheng A., Liu W.L., Tan C.K., Huang Y.T., Chung K.P., Lee M.R., Hsueh P.R. Infections caused by unusual Methylobacterium species. J. Clin. Microbiol. 2011;49(9):3329-3331. DOI 10.1128/JCM.01241-11.

22. Lee-Sarwar K.A., Lasky-Su J., Kelly R.S., Litonjua A.A., Weiss S.T. Gut microbial-derived metabolomics of asthma. Metabolites. 2020; 10(3):97. DOI 10.3390/metabo10030097.

23. Ley R.E. Gut microbiota in 2015: Prevotella in the gut: choose carefully. Nat. Rev. Gastroenterol. Hepatol. 2016;13(2):69-70. DOI 10.1038/nrgastro.2016.4.

24. Machiels K., Joossens M., Sabino J., De Preter V., Arijs I., Eeckhaut V., Ballet V., Claes K., Van Immerseel F., Verbeke K., Ferrante M., Verhaegen J., Rutgeerts P., Vermeire S. A decrease of the butyrateproducing species Roseburia hominis and Faecalibacterium prausnitzii defnes dysbiosis in patients with ulcerative colitis. Gut. 2014; 63(8):1275-1283. DOI 10.1136/gutjnl-2013-304833.

25. Malinen E., Rinttilä T., Kajander K., Mättö J., Kassinen A., Krogius L., Saarela M., Korpela R., Palva A. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with realtime PCR. Am. J. Gastroenterol. 2005;100(2):373-382.

26. Manichanh C., Borruel N., Casellas F., Guarner F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 2012;9(10):599-608. DOI 10.1038/nrgastro.2012.152.

27. O’Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688-693. DOI 10.1038/sj.embor.7400731.

28. Pace F., Pace M., Quartarone G. Probiotics in digestive diseases: focus on Lactobacillus GG. Minerva Gastroenterol. Dietol. 2015;61(4):273-292.

29. Parkes G.C., Rayment N.B., Hudspith B.N., Petrovska L., Lomer M.C., Brostoff J., Whelan K., Sanderson J.D. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol. Motil. 2012;24(1):31-39. DOI 10.1111/j.1365-2982.2011.01803.x.

30. Pozuelo M., Panda S., Santiago A., Mendez S., Accarino A., Santos J., Guarner F., Azpiroz F., Manichanh C. Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome. Sci. Rep. 2015;5:12693. DOI 10.1038/srep12693.

31. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D.R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J.M., Hansen T., Le Paslier D., Linneberg A., Nielsen H.B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y, Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Doré J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J.; MetaHIT Consortium, Bork P., Ehrlich S.D., Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65. DOI 10.1038/nature08821.

32. Rajilić-Stojanović M., Biagi E., Heilig H.G., Kajander K., Kekkonen R.A., Tims S., de Vos W.M. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141(5):1792-1801. DOI 10.1053/j.gastro.2011.07.043 2011.

33. Rigsbee L., Agans R., Shankar V., Kenche H., Khamis H.J., Michail S., Paliy O. Quantitative profling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. 2012;107(11):1740-51. DOI 10.1038/ajg.2012.287.

34. Rodiño-Janeiro B.K., Vicario M., Alonso-Cotoner C., Pascua-García R., Santos J. A Review of Microbiota and Irritable Bowel Syndrome: Future in Therapies. Adv. Ther. 2018;35(3):289-310. DOI 10.1007/s12325-018-0673-5.

35. Saebo A., Vik E., Lange O.J., Matuszkiewicz L. Inflammatory bowel disease associated with Yersinia enterocolitica O:3 infection. Eur. J. Intern. Med. 2005;16(3):176-182.

36. Shen Z.H., Zhu C.X., Quan Y.S., Yang Z.Y., Wu S., Luo W.W., Tan B., Wang X.Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2018;24(1): 5-14. DOI 10.3748/wjg.v24.i1.5.

37. Shin N.R., Whon T.W., Bae J.W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496-503. DOI 10.1016/j.tibtech.2015.06.011.

38. Sonnenberg A., Genta R.M. Low prevalence of Helicobacter pylori infection among patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2012;35(4):469-476. DOI 10.1111/j.1365-2036.2011.04969.x.

39. Stiemsma L.T., Arrieta M.C., Dimitriu P.A., Cheng J., Thorson L., Lefebvre D.L., Azad M.B., Subbarao P., Mandhane P., Becker A., Sears M.R., Kollmann T.R., Canadian Healthy Infant Longitudinal Development (CHILD) Study Investigators; Mohn W.W., Finlay B.B., Turvey S.E. Shifts in Lachnospira and Clostridium sp. in the 3-month stool microbiome are associated with preschool age asthma. Clin. Sci. (Lond ). 2016;130(23):2199-2207. DOI 10.1042/CS20160349.

40. Su T., Rongbei L., Lee A., Long Ya., Du L., Lai S., Chen X., Wang L., Si J., Chung O., Chen S. Altered intestinal microbiota with increased abundance of Prevotella is associated with high risk of diarrhea-predominant irritable bowel syndrome. Gastroenterol. Research Pract. 2018;2018:6961783. DOI 10.1155/2018/6961783.

41. Tana C., Umesaki Y., Imaoka A., Handa T., Kanazawa M., Fukudo S. Altered profles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol. Motil. 2010;22(5):512-519, e114-5. DOI 10.1111/j.1365-2982.2009.01427.x.

42. Tap J., Derrien M., Törnblom H., Brazeilles R., Cools-Portier S., Doré J., Störsrud S., Le Nevé B., Öhman L., Simrén M. Identifcation of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterol. 2017;152(1):111-123.e8. DOI 10.1053/j.gastro.2016.09.049.

43. Wang Y., Qian P.Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One. 2009;4:e7401. DOI 10.1371/journal.pone.0007401.

44. Załęski A., Banaszkiewicz A., Walkowiak J. Butyric acid in irritable bowel syndrome. Prz. Gastroenterol. 2013;8(6):350-353. DOI 10.5114/pg.2013.39917.

45. Zhuang X., Xiong L., Li L., Li M., Chen M. Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2017;32(1):28-38. DOI 10.1111/jgh.13471.


Review

Views: 1225


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)