Preview

Vavilov Journal of Genetics and Breeding

Advanced search

ELOE: A WEB APPLICATION FOR ESTIMATION OF GENE TRANSLATION ELONGATION EFFICIENCY

Abstract

Expression efficiency is one of major characteristics of genes considered in a number of modern investigations. It is known that gene expression efficiency in an organism is regulated at many stages: transcription, translation, posttranslational protein modification, and others. In this study, a special EloE (Elongation Efficiency) web application is described. It sorts genes in an organism in the order of decreasing theoretical rate of the elongation stage of translation deduced from their nucleotide sequences. The predictions done in this way show a significant correlation with available experimental data on gene expression in various organisms, for instance, S. cerevisiae and H. pylori. In addition, the program identifies preferential codons in a genome and defines the distribution of stability of potential secondary structures in 5and 3regions of mRNA. EloE can be useful in preliminary estimation of translation elongation efficiency of genes in organisms for which experimental data are not available yet. Some results can be used, for instance, in other programs modeling artificial genetic constructs in gene engineering experiments.

About the Authors

V. S. Sokolov
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


B. S. Zuraev
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


S. A. Lashin
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


Yu. G. Matushkin
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Novosibirsk National Research State University, Novosibirsk, Russia
Russian Federation


References

1. Лихошвай В.А., Матушкин Ю.Г. Предсказание эффективности экспрессии генов по их нуклеотидному составу // Молекулярная биология. 2000. Т. 34. № 3. С. 406–412.

2. Матушкин Ю.Г. и др. Эффективность элонгации генов дрожжей кореллирует с плотностью нуклеосомной упаковки в 5´-нетранслируемом районе // Математическая биология и биоинформатика. 2013. Т. 8. № 1. С. 248–257.

3. Bennetzen J.L., Hall B.D. Codon selection in Yeast // J. Biol. Chem. 1982. V. 257. No. 6. Р. 3026–3031.

4. Eck S., Stephan W. Determining the relationship of gene expression and global mRNA stability in Drosophila melanogaster and Escherichia coli using linear models // Gene. 2008. V. 424. No. 1. Р. 102–107.

5. Hofacker I.L. Vienna RNA secondary structure server // Nucleic acids research. 2003. V. 31. No. 13. Р. 3429–3431.

6. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli system // J. Molecular Biology. 1981. V. 151. No. 3. Р. 389–409.

7. Likhoshvai V.A., Matushkin Y.G. Differentiation of singlecell organisms according to elongation stages crucial for gene expression effi cacy // FEBS letters. 2002. V. 516. No. 1. Р. 87–92.

8. Lopinski J.D., Dinman J.D., Bruenn J.A. Kinetics of ribosomal pausing during programmed–1 translational frameshifting // Mol. Cell. Biol. 2000. V. 20. No. 4. Р. 1095–1103.

9. McLachlan A.D., Staden R., Boswell D.R. A method for measuring the non-random bias of a codon usage table // Nucleic acids research. 1984. V. 12. No. 24. Р. 9567–9575.

10. Sharp P.M., Li W.H. An evolutionary perspective on synonymous codon usage in unicellular organisms // Journal molecular evolution. 1986. V. 24. No. 1-2. Р. 28–38.

11. Sokolov V.S., Likhoshvai V.A., Matushkin Y.G. Gene expression and secondary mRNA structures in different Mycoplasma species // Russian Journal Genetics: Applied Research. 2014. V. 4. No. 3. Р. 208–217.

12. Takyar S., Hickerson R.P., Noller H.F. mRNA helicase activity of the ribosome // Cell. 2005. V. 120. No. 1. Р. 49–58.

13. Thanaraj T.A., Argos P. Ribosome-mediated translational pause and protein domain organization // Protein Science. 1996. V. 5. No. 8. Р. 1594–1612.

14. Vladimirov N.V., Likhoshvai V.A., Matushkin Y.G. Correlation of codon biases and potential secondary structures with mRNA translation effi ciency in unicellular organisms // Molecular Biology. 2007. V. 41. No. 5. Р. 843–850.

15. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction // Nucleic acids research. 2003. V. 31. No. 13. Р. 3406–3415.

16. Zuker M., Mathews D.H., Turner D.H. Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide // RNA biochemistry and biotechnology. Springer Netherlands, 1999. Р. 11–43.


Review

Views: 582


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)