Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

СТРУКТУРНЫЕ И ДИНАМИЧЕСКИЕ ОСОБЕННОСТИ МУТАНТОВ БЕЛКА SOD1, АССОЦИИРОВАННЫХ С БОКОВЫМ АМИОТРОФИЧЕСКИМ СКЛЕРОЗОМ

Полный текст:

Аннотация

Одной из причин гибели нейронов головного и спинного мозга при заболевании боковым амиотрофическим склерозом является образование внутриклеточных белковых агрегатов, вызванных мутациями в гене SOD1. Ранее показано, что продолжительность жизни пациентов отрицательно коррелирует с термостабильностью мутантных форм белка SOD1, носителями которых они были. В настоящей работе сделано предположение, что усиливать агрегацию мутантов SOD1 может не только дестабилизация структуры белка за счет разрушения водородных связей, но также возникновение новых водородных связей, стабилизирующих патогенную конформацию мутанта. Методом молекулярной динамики оценено время существования водородных связей в белке. Установлено, что корреляция этой оценки с продолжительностью жизни пациентов (R = 0,89, p < 0,00001) оказалась существенно сильнее корреляции, полученной ранее на основе анализа термостабильности мутантов.

Об авторах

Н. А. Алемасов
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Н. В. Иванисенко
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


В. А. Иванисенко
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук», Новосибирск, Россия
Россия


Список литературы

1. Alavi A., Nafi ssi S., Rohani M. et al. Genetic analysis and SOD1 mutation screening in Iranian amyotrophic lateral sclerosis patients // Neurobiol. Aging. 2013. V. 34. No. 5. P. 1516.e1–1516.e8.

2. Alder B.J., Wainwright T.E. Studies in Molecular Dynamics. I. General Method // J. Chem. Phys. 1959. V. 31. No. 2. P. 459.

3. Arnesano F., Banci L., Bertini I. et al. The unusually stable quaternary structure of human Cu, Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfi de status // J. Biol. Chem. 2004. V. 279. No. 46. P. 47998–48003.

4. Ayers J., Lelie H., Workman A. et al. Distinctive features of the D101N and D101G variants of superoxide dismutase 1; two mutations that produce rapidly progressing motor neuron disease // J. Neurochem. 2014. V. 128. No. 2. P. 305–314.

5. Bosco D.A., Morfini G., Karabacak N.M. et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS // Nat. Neurosci. 2010. V. 13. No. 11. P. 1396–1403.

6. Brown R.H. Amyotrophic lateral sclerosis. Insights from genetics // Arch. Neurol. 1997. V. 54. No. 10. P. 1246–1250.

7. Bruijn L.I., Houseweart M.K., Kato S. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1 // Science. 1998. V. 281. No. 5384. P. 1851–1854.

8. Byström R., Andersen P.M., Grцbner G., Oliveberg M. SOD1 mutations targeting surface hydrogen bonds promote amyotrophic lateral sclerosis without reducing apo-state stability // J. Biol. Chem. 2010. V. 285. No. 25. P. 19544–19552.

9. Chiti F., Dobson C.M. Amyloid formation by globular proteins under native conditions // Nat. Chem. Biol. 2009. V. 5. No. 1. P. 15–22.

10. Deng H.X., Tainer J.A., Mitsumoto H. et al. Two novel SOD1 mutations in patients with familial amyotrophic lateral sclerosis // Hum. Mol. Genet. 1995. V. 4. No. 6. P. 1113–1116.

11. Deng H.X., Shi Y., Furukawa Y. et al. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria // Proc. Natl. Acad. Sci. U. S. A. 2006. V. 103. No. 18. P. 7142–7147.

12. Ding F., Dokholyan N. V. Dynamical roles of metal ions and the disulfi de bond in Cu, Zn superoxide dismutase folding and aggregation // Proc. Natl. Acad. Sci. U. S. A. 2008. V. 105. No. 50. P. 19696–19701.

13. Efron B. Bootstrap methods: another look at the jackknife // Ann. Stat. 1979. V. 7. No. 1. P. 1–26.

14. Eisen A., Mezei M.M., Stewart H.G. et al. SOD1 gene mutations in ALS patients from British Columbia, Canada: clinical features, neurophysiology and ethical issues in management // Amyotroph. Lateral Scler. 2008. V. 9. No. 2. P. 108–119.

15. Haidet-Phillips A.M., Hester M.E., Miranda C.J. et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons // Nat. Biotechnol. 2011. V. 29. No. 9. P. 824–828.

16. Holmǿy T., Wilson J.A., von der Lippe C. et al. G127R: A novel SOD1 mutation associated with rapidly evolving ALS and severe pain syndrome // Amyotroph. Lateral Scler. 2010. V. 11. No. 5. P. 478–480.

17. Ivanova M.I., Sievers S.A., Guenther E.L. et al. Aggregation-triggering segments of SOD1 fi bril formation support a common pathway for familial and sporadic ALS // Proc. Natl. Acad. Sci. U. S. A. 2014. V. 111. No. 1. P. 197–201.

18. Khechinashvili N.N., Fedorov M.V., Kabanov A.V. et al. Side chain dynamics and alternative hydrogen bonding in the mechanism of protein thermostabilization // J. Biomol. Struct. Dyn. 2006. V. 24. No. 3. P. 255–262.

19. Kolmogorov A. Sulla determinazione empirica di una legge di distribuzione // G. dell’Istituto Ital. degli Attuari. 1933. V. 4. P. 1–11.

20. Kruskal W.H., Wallis W.A. Use of Ranks in One-Criterion Variance Analysis // J. Am. Stat. Assoc. 1952. V. 47. No. 260. P. 583–621.

21. Muneeswaran G., Kartheeswaran S., Muthukumar K. et al . Comparative structural and conformational studies on H43R and W32F mutants of copper-zinc superoxide dismutase by molecular dynamics simulation // Biophys. Chem. 2014. V. 185. P. 70–78.

22. Nagano S. Oxidative Modifi cations of Cu, Zn-Superoxide Dismutase (SOD1)–The Relevance to Amyotrophic Lateral Sclerosis (ALS) // Amyotrophic Lateral Sclerosis. InTech. 2012. P. 301–312.

23. Nisius L., Grzesiek S. Key stabilizing elements of protein structure identifi ed through pressure and temperature perturbation of its hydrogen bond network // Nat. Chem. 2012. V. 4. No. 9. P. 711–717.

24. Ross C.A., Poirier M.A. Protein aggregation and neurodegenerative disease // Nat. Med. 2004. V. 10 Suppl. P. S10– S17.

25. Salomon-Ferrer R., Case D.A., Walker R.C. An overview of the Amber biomolecular simulation package // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013. V. 3. No. 2. P. 198–210.

26. Sato T., Nakanishi T., Yamamoto Y. et al. Rapid disease progression correlates with instability of mutant SOD1 in familial ALS // Neurology. 2005. V. 65. No. 12. P. 1954–1957.

27. Smirnov N. Table for estimating the goodness of fit of empirical distributions // Ann. Math. Stat. 1948. V. 19. P. 279–281.

28. Stathopulos P.B., Rumfeldt J.A.O., Scholz G.A. et al. Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro // Proc. Natl. Acad. Sci. U. S. A. 2003. V. 100. No. 12. P. 7021–7026.

29. Wang Q., Johnson J.L., Agar N.Y.R., Agar J. N. et al. Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival // PLoS Biol. 2008. V. 6. No. 7. P. e170.

30. Wright G.S.A., Antonyuk S.V., Kershaw N.M. et al. Ligand binding and aggregation of pathogenic SOD1 // Nat. Commun. 2013. V. 4. P. 1758.

31. Yoshida M., Takahashi Y., Koike A. et al. A mutation database for amyotrophic lateral sclerosis // Hum. Mutat. 2010. V. 31. No. 9. P. 1003–1010.


Просмотров: 79


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)